File: interface_specs.rst

package info (click to toggle)
nipype 0.5.3-2wheezy2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,884 kB
  • sloc: python: 36,872; tcl: 597; makefile: 167
file content (470 lines) | stat: -rw-r--r-- 19,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
========================
Interface Specifications
========================

Before you start
----------------
Nipype is a young project maintained by an enthusiastic group of developers. Even though the documentation might be sparse or cryptic at times we strongly encourage you to contact us on the official nipype developers mailing list in case of any troubles: nipy-devel@neuroimaging.scipy.org (we are sharing a mailing list with the nipy community therefore please add ``[nipype]`` to the messsage title).


Overview
--------

We're using the `Enthought Traits
<http://code.enthought.com/projects/traits/>`_ package for all of our
inputs and outputs.  Traits allows us to validate user inputs and
provides a mechanism to handle all the *special cases* in a simple and
concise way though metadata.  With the metadata, each input/output can
have an optional set of metadata attributes (described in more detail
below).  The machinery for handling the metadata is located in the
base classes, so all subclasses use the same code to handle these
cases.  This is in contrast to our previous code where every class
defined it's own _parse_inputs, run and aggregate_outputs methods to
handle these cases.  Which of course leads to a dozen different ways
to solve the same problem.

Traits is a big package with a lot to learn in order to take full
advantage of.  But don't be intimidated!  To write a Nipype Trait
Specification, you only need to learn a few of the basics of Traits.
Here are a few starting points in the documentation:

* What are Traits?  The `Introduction in the User Manual
  <http://code.enthought.com/projects/traits/docs/html/traits_user_manual/intro.html>`_
  gives a brief description of the functionality traits provides.

* Traits and metadata.  The `second section of the User Manual
  <http://code.enthought.com/projects/traits/docs/html/traits_user_manual/defining.html>`_
  gives more details on traits and how to use them.  Plus there a
  section describing metadata, including the metadata all traits have.

* If your interested in more of a *big picture* overview, `Gael wrote
  a good tutorial
  <http://code.enthought.com/projects/traits/docs/html/tutorials/traits_ui_scientific_app.html>`_
  that shows how to write a scientific application using traits for
  the benefit of the generated UI components.  (For now, Nipype is not
  taking advantage of the generated UI feature of traits.)

Traits version
^^^^^^^^^^^^^^

We're using Traits version 3.x which can be install as part of `EPD
<http://enthought.com/products/epd.php>`_ or from `pypi
<http://pypi.python.org/pypi/Traits/3.3.0>`_

More documentation
^^^^^^^^^^^^^^^^^^

Not everything is documented in the User Manual, in those cases the
`enthought-dev mailing list
<https://mail.enthought.com/mailman/listinfo/enthought-dev>`_ or the
`API docs
<http://code.enthought.com/projects/files/ETS32_API/enthought.traits.html>`_
is your next place to look.

Nipype Interface Specifications
-------------------------------

Each interface class defines two specifications: 1) an InputSpec and
2) an OutputSpec.  Each of these are prefixed with the class name of
the interfaces.  For example, Bet has these specs:

  - BETInputSpec
  - BETOutputSpec

Each of these Specs are classes, derived from a base TraitedSpec class
(more on these below).  The InputSpec consists of attributes which
correspond to different parameters for the tool they wrap/interface.
In the case of a command-line tool like Bet, the InputSpec attributes
correspond to the different command-line parameters that can be passed
to Bet.  If you are familiar with the Nipype 0.2 code-base, these
attributes are the same as the keys in the opt_map dictionaries.  When
an interfaces class is instantiated, the InputSpec is bound to the
``inputs`` attribute of that object.  Below is an example of how the
``inputs`` appear to a user for Bet::

  >>> from nipype.interfaces import fsl
  >>> bet = fsl.BET()
  >>> type(bet.inputs)
  <class 'nipype.interfaces.fsl.preprocess.BETInputSpec'>
  >>> bet.inputs.<TAB>
  bet.inputs.__class__           bet.inputs.center
  bet.inputs.__delattr__         bet.inputs.environ
  bet.inputs.__doc__             bet.inputs.frac
  bet.inputs.__getattribute__    bet.inputs.functional
  bet.inputs.__hash__            bet.inputs.hashval
  bet.inputs.__init__            bet.inputs.infile
  bet.inputs.__new__             bet.inputs.items
  bet.inputs.__reduce__          bet.inputs.mask
  bet.inputs.__reduce_ex__       bet.inputs.mesh
  bet.inputs.__repr__            bet.inputs.nooutput
  bet.inputs.__setattr__         bet.inputs.outfile
  bet.inputs.__str__             bet.inputs.outline
  bet.inputs._generate_handlers  bet.inputs.outputtype
  bet.inputs._get_hashval        bet.inputs.radius
  bet.inputs._hash_infile        bet.inputs.reduce_bias
  bet.inputs._xor_inputs         bet.inputs.skull
  bet.inputs._xor_warn           bet.inputs.threshold
  bet.inputs.args                bet.inputs.vertical_gradient


Each Spec inherits from a parent Spec.  The parent Specs provide
attribute(s) that are common to all child classes.  For example, FSL
InputSpecs inherit from interfaces.fsl.base.FSLTraitedSpec.
FSLTraitedSpec defines an ``outputtype`` attribute, which stores the
file type (NIFTI, NIFTI_PAIR, etc...) for all generated output files.

InputSpec class hierarchy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Below is the current class hierarchy for InputSpec classes (from
base class down to subclasses).:

  ``TraitedSpec``: Nipype's primary base class for all Specs.
  Provides initialization, some nipype-specific methods and any trait
  handlers we define. Inherits from traits.HasTraits.
  
	  ``BaseInterfaceInputSpec``: Defines inputs common to all 
	  Interfaces (``ignore_exception``). If in doubt inherit from this.

	      ``CommandLineInputSpec``: Defines inputs common to all
	      command-line classes (``args`` and ``environ``)
	
	        ``FSLTraitedSpec``: Defines inputs common to all FSL classes
	        (``outputtype``)
		  		
	        ``SPMCommandInputSpec``: Defines inputs common to all SPM classes (``matlab_cmd``, ``path``, and ``mfile``)
	        
	        ``FSTraitedSpec``: Defines inputs common to all FreeSurfer classes
	        (``sbjects_dir``)
	        
	        ``MatlabInputSpec``: Defines inputs common to all Matlab classes (``script``, ``nodesktop``, ``nosplash``, ``logfile``, ``single_comp_thread``, ``mfile``, ``script_file``, and ``paths``)
	        
	        ``SlicerCommandLineInputSpec``: Defines inputs common to all Slicer classes (``module``)

Most developers will only need to code at the the interface-level (i.e. implementing custom class inheriting from one of the above classes).

Output Specs
^^^^^^^^^^^^

The OutputSpec defines the outputs that are generated, or possibly
generated depending on inputs, by the tool.  OutputSpecs inherit from
``interfaces.base.TraitedSpec`` directly.


Traited Attributes
------------------

Each specification attribute is an instance of a Trait class.  These
classes encapsulate many standard Python types like Float and Int, but
with additional behavior like type checking.  (*See the documentation
on traits for more information on these trait types.*) To handle
unique behaviors of our attributes we us traits metadata.  These are
keyword arguments supplied in the initialization of the attributes.
The base classes ``BaseInterface`` and ``CommandLine``
(defined in ``nipype.interfaces.base``) check for the existence/or
value of these metadata and handle the inputs/outputs accordingly.
For example, all mandatory parameters will have the ``mandatory =
True`` metadata::

  class BetInputSpec(FSLTraitedSpec):
    infile = File(exists=True,
                  desc = 'input file to skull strip',
                  argstr='%s', position=0, mandatory=True)


Common
^^^^^^

``exists``
	For files, use ``nipype.interfaces.base.File`` as the trait type.  If
	the file must exist for the tool to execute, specify ``exists = True``
	in the initialization of File (as shown in BetInputSpec above). This
	will trigger the underlying traits code to confirm the file assigned
	to that *input* actually exists.  If it does not exist, the user will
	be presented with an error message::
	
	    >>> bet.inputs.infile = 'does_not_exist.nii'
	    ------------------------------------------------------------
	    Traceback (most recent call last):
	      File "<ipython console>", line 1, in <module>
	      File "/Users/cburns/local/lib/python2.5/site-packages/nipype/interfaces/base.py", line 76, in validate
	        self.error( object, name, value )
	      File "/Users/cburns/local/lib/python2.5/site-packages/enthought/traits/trait_handlers.py", line 175, in error
	        value )
	    TraitError: The 'infile' trait of a BetInputSpec instance must be a file 
	    name, but a value of 'does_not_exist.nii' <type 'str'> was specified.
	    
``desc``
	All trait objects have a set of default metadata attributes.  ``desc``
	is one of those and is used as a simple, one-line docstring.  The
	``desc`` is printed when users use the ``help()`` methods.
	
	**Required:** This metadata is required by all nipype interface
	  classes.
	  
``usedefault``
	Set this metadata to True when the *default value* for the trait type
	of this attribute is an acceptable value.  All trait objects have a
	default value, ``traits.Int`` has a default of ``0``, ``traits.Float``
	has a default of ``0.0``, etc...  You can also define a default value
	when you define the class.  For example, in the code below all objects
	of ``Foo`` will have a default value of 12 for ``x``::
	
	    >>> import enthought.traits.api as traits
	    >>> class Foo(traits.HasTraits):
	    ...     x = traits.Int(12)
	    ...     y = traits.Int
	    ...
	    >>> foo = Foo()
	    >>> foo.x
	    12
	    >>> foo.y
	    0
	
	Nipype only passes ``inputs`` on to the underlying package if they
	have been defined (more on this later).  So if you specify
	``usedefault = True``, you are telling the parser to pass the default
	value on to the underlying package.  Let's look at the InputSpec for
	SPM Realign::
	
	    class RealignInputSpec(BaseInterfaceInputSpec):
	        jobtype = traits.Enum('estwrite', 'estimate', 'write',
	                              desc='one of: estimate, write, estwrite',
	                              usedefault=True)
	
	Here we've defined ``jobtype`` to be an enumerated trait type,
	``Enum``, which can be set to one of the following: ``estwrite``,
	``estimate``, or ``write``.  In a container, the default is always the
	first element.  So in this case, the default will be ``estwrite``::
	
	    >>> from nipype.interfaces import spm
	    >>> rlgn = spm.Realign()
	    >>> rlgn.inputs.infile
	    <undefined>
	    >>> rlgn.inputs.jobtype
	    'estwrite'
	    
``xor`` and ``requires``
	Both of these accept a list of trait names. The ``xor`` metadata reflects
	mutually exclusive traits, while the requires metadata reflects traits
	that have to be set together. When a xor-ed trait is set, all other
	traits belonging to the list are set to Undefined. The function
	check_mandatory_inputs ensures that all requirements (both mandatory and
	via the requires metadata are satisfied). These are also reflected in
	the help function.

``copyfile``
	This is metadata for a File or Directory trait that is relevant only in 
	the context of wrapping an interface in a `Node` and `MapNode`. `copyfile` 
	can be set to either `True` or `False`. `False` indicates that contents 
	should be symlinked, while `True` indicates that the contents should be 
	copied over.
	
CommandLine
^^^^^^^^^^^

``argstr``
	The metadata keyword for specifying the format strings
	for the parameters. This was the *value* string in the opt_map
	dictionaries of Nipype 0.2 code.  If we look at the
	``FlirtInputSpec``, the ``argstr`` for the reference file corresponds
	to the argument string I would need to provide with the command-line
	version of ``flirt``::
	
	    class FlirtInputSpec(FSLTraitedSpec):
	        reference = File(exists = True, argstr = '-ref %s', mandatory = True,
	                         position = 1, desc = 'reference file')
	
	**Required:** This metadata is required by all command-line interface classes.

``position``
	This metadata is used to specify the position of arguments.  Both
	positive and negative values are accepted.  ``position = 0`` will
	position this argument as the first parameter after the command
	name. ``position = -1`` will position this argument as the last
	parameter, after all other parameters.
	
``genfile``
	If True, the ``genfile`` metadata specifies that a filename should be
	generated for this parameter *if-and-only-if* the user did not provide
	one.  The nipype convention is to automatically generate output
	filenames when not specified by the user both as a convenience for the
	user and so the pipeline can easily gather the outputs. Requires 
	``_gen_filename()`` method to be implemented. This way should be used if the
	desired file name is dependent on some runtime variables (such as file name
	of one of the inputs, or current working directory). In case when it should 
	be fixed it's recommended to just use ``usedefault``.
	
``sep``
	For List traits the string with witch elements of the list will be joined.
	
SPM
^^^

``field``
	name of the structure refered by the SPM job manager
	
	**Required:** This metadata is required by all SPM-mediated
	  interface classes.


Defining an interface class
---------------------------

Common
^^^^^^

When you define an interface class, you will define these attributes
and methods:

* ``input_spec``: the InputSpec
* ``output_spec``: the OutputSpec
* ``_list_outputs()``: Returns a dictionary containing names of generated files that are expected after package completes execution.  This is used by ``BaseInterface.aggregate_outputs`` to gather all output files for the pipeline.

  
CommandLine
^^^^^^^^^^^

For command-line interfaces:

* ``_cmd``: the command-line command

If you used genfile:

* ``_gen_filename(name)``:  Generate filename, used for filenames that nipype generates as a convenience for users.  This is for parameters that are required by the wrapped package, but we're generating from some other parameter. For example, ``BET.inputs.outfile`` is required by BET but we can generate the name from ``BET.inputs.infile``.  Override this method in subclass to handle.

And optionally:

* ``_format_arg(name, spec, value)``: For extra formatting of the input values before passing them to generic ``_parse_inputs()`` method.

For example this is the class definition for Flirt, minus the docstring::

    class Flirt(NEW_FSLCommand):
        _cmd = 'flirt'
        input_spec = FlirtInputSpec
        output_spec = FlirtOutputSpec

        def _list_outputs(self):
            outputs = self.output_spec().get()
            outputs['outfile'] = self.inputs.outfile
            # Generate an outfile if one is not provided
            if not isdefined(outputs['outfile']) and isdefined(self.inputs.infile):
                outputs['outfile'] = self._gen_fname(self.inputs.infile,
                                                     suffix = '_flirt')
            outputs['outmatrix'] = self.inputs.outmatrix
            # Generate an outmatrix file if one is not provided
            if not isdefined(outputs['outmatrix']) and \
                    isdefined(self.inputs.infile):
                outputs['outmatrix'] = self._gen_fname(self.inputs.infile,
                                                       suffix = '_flirt.mat',
                                                       change_ext = False)
            return outputs

        def _gen_filename(self, name):
            if name in ('outfile', 'outmatrix'):
                return self._list_outputs()[name]
            else:
                return None

There are two possible output files ``outfile`` and ``outmatrix``,
both of which can be generated if not specified by the user.

Also notice the use of ``self._gen_fname()`` - a FSLCommand helper method for generating filenames (with extensions conforming with FSLOUTPUTTYPE).

See also :doc:`cmd_interface_devel`.

SPM
^^^

For SPM-mediated interfaces:

* ``_jobtype`` and ``_jobname``: special names used used by the SPM job manager. You can find them by saving your batch job as an .m file and looking up the code.

And optionally:

* ``_format_arg(name, spec, value)``: For extra formatting of the input values before passing them to generic ``_parse_inputs()`` method.

Matlab
^^^^^^

See :doc:`matlab_interface_devel`.

Python
^^^^^^

See :doc:`python_interface_devel`.

Undefined inputs
----------------

All the inputs and outputs that were not explicitly set (And do not have a usedefault flag - see above) will have Undefined value. To check if something is defined you have to explicitly call ``isdefiend`` function (comparing to None will not work).

Example of inputs
-----------------

Below we have an example of using Bet.  We can see from the help which
inputs are mandatory and which are optional, along with the one-line
description provided by the ``desc`` metadata::

    >>> from nipype.interfaces import fsl
    >>> fsl.BET.help()
    Inputs
    ------

    Mandatory:
     infile: input file to skull strip

    Optional:
     args: Additional parameters to the command
     center: center of gravity in voxels
     environ: Environment variables (default={})
     frac: fractional intensity threshold
     functional: apply to 4D fMRI data
     mask: create binary mask image
     mesh: generate a vtk mesh brain surface
     nooutput: Don't generate segmented output
     outfile: name of output skull stripped image
     outline: create surface outline image
     outputtype: None
     radius: head radius
     reduce_bias: bias field and neck cleanup
     skull: create skull image
     threshold: apply thresholding to segmented brain image and mask
     vertical_gradient: vertical gradient in fractional intensity threshold (-1, 1)

    Outputs
    -------
    maskfile: path/name of binary brain mask (if generated)
    meshfile: path/name of vtk mesh file (if generated)
    outfile: path/name of skullstripped file
    outlinefile: path/name of outline file (if generated)


Here we create a bet object and specify the required input. We then
check our inputs to see which are defined and which are not::

    >>> bet = fsl.BET(infile = 'f3.nii')
    >>> bet.inputs
    args = <undefined>
    center = <undefined>
    environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
    frac = <undefined>
    functional = <undefined>
    infile = f3.nii
    mask = <undefined>
    mesh = <undefined>
    nooutput = <undefined>
    outfile = <undefined>
    outline = <undefined>
    outputtype = NIFTI_GZ
    radius = <undefined>
    reduce_bias = <undefined>
    skull = <undefined>
    threshold = <undefined>
    vertical_gradient = <undefined>
    >>> bet.cmdline
    'bet f3.nii /Users/cburns/data/nipype/s1/f3_brain.nii.gz'

We also checked the command-line that will be generated when we run
the command and can see the generated output filename
``f3_brain.nii.gz``.