1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
#!/usr/bin/env python
"""
=============================================
dMRI: Connectivity - Camino, CMTK, FreeSurfer
=============================================
Introduction
============
This script, connectivity_tutorial.py, demonstrates the ability to perform connectivity mapping
using Nipype for pipelining, Freesurfer for Reconstruction / Parcellation, Camino for tensor-fitting
and tractography, and the Connectome Mapping Toolkit (CMTK) for connectivity analysis.
python connectivity_tutorial.py
We perform this analysis using the FSL course data, which can be acquired from here:
* http://www.fmrib.ox.ac.uk/fslcourse/fsl_course_data2.tar.gz
This pipeline also requires the Freesurfer directory for 'subj1' from the FSL course data.
To save time, this data can be downloaded from here:
* http://dl.dropbox.com/u/315714/subj1.zip?dl=1
A data package containing the outputs of this pipeline can be obtained from here:
* http://db.tt/1vx4vLeP
Along with Camino (http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php?n=Main.HomePage),
Camino-Trackvis (http://www.nitrc.org/projects/camino-trackvis/), FSL (http://www.fmrib.ox.ac.uk/fsl/),
and Freesurfer (http://surfer.nmr.mgh.harvard.edu/), you must also have the Connectome File Format
library installed as well as the Connectome Mapper.
These are written by Stephan Gerhard and can be obtained from:
http://www.cmtk.org/
Or on github at:
CFFlib: https://github.com/LTS5/cfflib
CMP: https://github.com/LTS5/cmp
Output data can be visualized in the ConnectomeViewer
ConnectomeViewer: https://github.com/LTS5/connectomeviewer
First, we import the necessary modules from nipype.
"""
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
import nipype.interfaces.camino as camino
import nipype.interfaces.fsl as fsl
import nipype.interfaces.camino2trackvis as cam2trk
import nipype.interfaces.freesurfer as fs # freesurfer
import nipype.interfaces.cmtk as cmtk
import nipype.algorithms.misc as misc
import inspect
import os.path as op # system functions
import cmp # connectome mapper
"""
We define the following functions to scrape the voxel and data dimensions of the input images. This allows the
pipeline to be flexible enough to accept and process images of varying size. The SPM Face tutorial
(fmri_spm_face.py) also implements this inferral of voxel size from the data. We also define functions to
select the proper parcellation/segregation file from Freesurfer's output for each subject. For the mapping in
this tutorial, we use the aparc+seg.mgz file. While it is possible to change this to use the regions defined in
aparc.a2009s+aseg.mgz, one would also have to write/obtain a network resolution map defining the nodes based on those
regions.
"""
def get_vox_dims(volume):
import nibabel as nb
if isinstance(volume, list):
volume = volume[0]
nii = nb.load(volume)
hdr = nii.get_header()
voxdims = hdr.get_zooms()
return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])]
def get_data_dims(volume):
import nibabel as nb
if isinstance(volume, list):
volume = volume[0]
nii = nb.load(volume)
hdr = nii.get_header()
datadims = hdr.get_data_shape()
return [int(datadims[0]), int(datadims[1]), int(datadims[2])]
def get_affine(volume):
import nibabel as nb
nii = nb.load(volume)
return nii.get_affine()
def select_aparc(list_of_files):
for in_file in list_of_files:
if 'aparc+aseg.mgz' in in_file:
idx = list_of_files.index(in_file)
return list_of_files[idx]
def select_aparc_annot(list_of_files):
for in_file in list_of_files:
if '.aparc.annot' in in_file:
idx = list_of_files.index(in_file)
return list_of_files[idx]
"""
These need to point to the main Freesurfer directory as well as the freesurfer subjects directory.
No assumptions are made about where the directory of subjects is placed.
Recon-all must have been run on subj1 from the FSL course data.
"""
fs_dir = op.abspath('/usr/local/freesurfer')
subjects_dir = op.abspath(op.join(op.curdir,'./subjects'))
fsl.FSLCommand.set_default_output_type('NIFTI')
"""
This needs to point to the fdt folder you can find after extracting
http://www.fmrib.ox.ac.uk/fslcourse/fsl_course_data2.tar.gz
"""
data_dir = op.abspath('fsl_course_data/fdt/')
fs.FSCommand.set_default_subjects_dir(subjects_dir)
subject_list = ['subj1']
"""
An infosource node is used to loop through the subject list and define the input files.
For our purposes, these are the diffusion-weighted MR image, b vectors, and b values.
The info dictionary is used to provide a template of the naming of these files. For instance,
the 4D nifti diffusion image is stored in the FSL course data as data.nii.gz.
"""
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']), name="infosource")
infosource.iterables = ('subject_id', subject_list)
info = dict(dwi=[['subject_id', 'data']],
bvecs=[['subject_id','bvecs']],
bvals=[['subject_id','bvals']])
"""
A datasource node is used to perform the actual data grabbing.
Templates for the associated images are used to obtain the correct images.
The data are assumed to lie in data_dir/subject_id/.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=info.keys()),
name = 'datasource')
datasource.inputs.template = "%s/%s"
datasource.inputs.base_directory = data_dir
datasource.inputs.field_template = dict(dwi='%s/%s.nii.gz')
datasource.inputs.template_args = info
datasource.inputs.base_directory = data_dir
"""
FreeSurferSource nodes are used to retrieve a number of image
files that were automatically generated by the recon-all process.
Here we use three of these nodes, two of which are defined to return files for solely the left and right hemispheres.
"""
FreeSurferSource = pe.Node(interface=nio.FreeSurferSource(), name='fssource')
FreeSurferSource.inputs.subjects_dir = subjects_dir
FreeSurferSourceLH = pe.Node(interface=nio.FreeSurferSource(), name='fssourceLH')
FreeSurferSourceLH.inputs.subjects_dir = subjects_dir
FreeSurferSourceLH.inputs.hemi = 'lh'
FreeSurferSourceRH = pe.Node(interface=nio.FreeSurferSource(), name='fssourceRH')
FreeSurferSourceRH.inputs.subjects_dir = subjects_dir
FreeSurferSourceRH.inputs.hemi = 'rh'
"""
Since the b values and b vectors come from the FSL course, we must convert it to a scheme file
for use in Camino.
"""
fsl2scheme = pe.Node(interface=camino.FSL2Scheme(), name="fsl2scheme")
fsl2scheme.inputs.usegradmod = True
"""
FSL's Brain Extraction tool is used to create a mask from the b0 image
"""
b0Strip = pe.Node(interface=fsl.BET(mask = True), name = 'bet_b0')
"""
FSL's FLIRT function is used to coregister the b0 mask and the structural image.
A convert_xfm node is then used to obtain the inverse of the transformation matrix.
FLIRT is used once again to apply the inverse transformation to the parcellated brain image.
"""
coregister = pe.Node(interface=fsl.FLIRT(dof=6), name = 'coregister')
coregister.inputs.cost = ('corratio')
convertxfm = pe.Node(interface=fsl.ConvertXFM(), name = 'convertxfm')
convertxfm.inputs.invert_xfm = True
inverse = pe.Node(interface=fsl.FLIRT(), name = 'inverse')
inverse.inputs.interp = ('nearestneighbour')
inverse_AparcAseg = pe.Node(interface=fsl.FLIRT(), name = 'inverse_AparcAseg')
inverse_AparcAseg.inputs.interp = ('nearestneighbour')
"""
A number of conversion operations are required to obtain NIFTI files from the FreesurferSource for each subject.
Nodes are used to convert the following:
* Original structural image to NIFTI
* Parcellated white matter image to NIFTI
* Parcellated whole-brain image to NIFTI
* Pial, white, inflated, and spherical surfaces for both the left and right hemispheres
are converted to GIFTI for visualization in ConnectomeViewer
* Parcellated annotation files for the left and right hemispheres are also converted to GIFTI
"""
mri_convert_Brain = pe.Node(interface=fs.MRIConvert(), name='mri_convert_Brain')
mri_convert_Brain.inputs.out_type = 'nii'
mri_convert_WMParc = mri_convert_Brain.clone('mri_convert_WMParc')
mri_convert_AparcAseg = mri_convert_Brain.clone('mri_convert_AparcAseg')
mris_convertLH = pe.Node(interface=fs.MRIsConvert(), name='mris_convertLH')
mris_convertLH.inputs.out_datatype = 'gii'
mris_convertRH = mris_convertLH.clone('mris_convertRH')
mris_convertRHwhite = mris_convertLH.clone('mris_convertRHwhite')
mris_convertLHwhite = mris_convertLH.clone('mris_convertLHwhite')
mris_convertRHinflated = mris_convertLH.clone('mris_convertRHinflated')
mris_convertLHinflated = mris_convertLH.clone('mris_convertLHinflated')
mris_convertRHsphere = mris_convertLH.clone('mris_convertRHsphere')
mris_convertLHsphere = mris_convertLH.clone('mris_convertLHsphere')
mris_convertLHlabels = mris_convertLH.clone('mris_convertLHlabels')
mris_convertRHlabels = mris_convertLH.clone('mris_convertRHlabels')
"""
An inputnode is used to pass the data obtained by the data grabber to the actual processing functions
"""
inputnode = pe.Node(interface=util.IdentityInterface(fields=["dwi", "bvecs", "bvals", "subject_id"]), name="inputnode")
"""
In this section we create the nodes necessary for diffusion analysis.
First, the diffusion image is converted to voxel order, since this is the format in which Camino does
its processing.
"""
image2voxel = pe.Node(interface=camino.Image2Voxel(), name="image2voxel")
"""
Second, diffusion tensors are fit to the voxel-order data.
If desired, these tensors can be converted to a Nifti tensor image using the DT2NIfTI interface.
"""
dtifit = pe.Node(interface=camino.DTIFit(),name='dtifit')
"""
Next, a lookup table is generated from the schemefile and the
signal-to-noise ratio (SNR) of the unweighted (q=0) data.
"""
dtlutgen = pe.Node(interface=camino.DTLUTGen(), name="dtlutgen")
dtlutgen.inputs.snr = 16.0
dtlutgen.inputs.inversion = 1
"""
In this tutorial we implement probabilistic tractography using the PICo algorithm.
PICo tractography requires an estimate of the fibre direction and a model of its uncertainty in each voxel;
this probabilitiy distribution map is produced using the following node.
"""
picopdfs = pe.Node(interface=camino.PicoPDFs(), name="picopdfs")
picopdfs.inputs.inputmodel = 'dt'
"""
Finally, tractography is performed. In this tutorial, we will use only one iteration for time-saving purposes.
It is important to note that we use the TrackPICo interface here. This interface now expects the files required
for PICo tracking (i.e. the output from picopdfs). Similar interfaces exist for alternative types of tracking,
such as Bayesian tracking with Dirac priors (TrackBayesDirac).
"""
track = pe.Node(interface=camino.TrackPICo(), name="track")
track.inputs.iterations = 1
"""
Currently, the best program for visualizing tracts is TrackVis. For this reason, a node is included to
convert the raw tract data to .trk format. Solely for testing purposes, another node is added to perform the reverse.
"""
camino2trackvis = pe.Node(interface=cam2trk.Camino2Trackvis(), name="camino2trk")
camino2trackvis.inputs.min_length = 30
camino2trackvis.inputs.voxel_order = 'LAS'
trk2camino = pe.Node(interface=cam2trk.Trackvis2Camino(), name="trk2camino")
"""
Tracts can also be converted to VTK and OOGL formats, for use in programs such as GeomView and Paraview,
using the following two nodes.
"""
vtkstreamlines = pe.Node(interface=camino.VtkStreamlines(), name="vtkstreamlines")
procstreamlines = pe.Node(interface=camino.ProcStreamlines(), name="procstreamlines")
procstreamlines.inputs.outputtracts = 'oogl'
"""
We can easily produce a variety of scalar values from our fitted tensors. The following nodes generate the
fractional anisotropy and diffusivity trace maps and their associated headers, and then merge them back
into a single .nii file.
"""
fa = pe.Node(interface=camino.ComputeFractionalAnisotropy(),name='fa')
trace = pe.Node(interface=camino.ComputeTensorTrace(),name='trace')
dteig = pe.Node(interface=camino.ComputeEigensystem(), name='dteig')
analyzeheader_fa = pe.Node(interface=camino.AnalyzeHeader(),name='analyzeheader_fa')
analyzeheader_fa.inputs.datatype = 'double'
analyzeheader_trace = pe.Node(interface=camino.AnalyzeHeader(),name='analyzeheader_trace')
analyzeheader_trace.inputs.datatype = 'double'
fa2nii = pe.Node(interface=misc.CreateNifti(),name='fa2nii')
trace2nii = fa2nii.clone("trace2nii")
"""
This section adds the Connectome Mapping Toolkit (CMTK) nodes.
These interfaces are fairly experimental and may not function properly.
In order to perform connectivity mapping using CMTK, the parcellated structural data is rewritten
using the indices and parcellation scheme from the connectome mapper (CMP). This process has been
written into the ROIGen interface, which will output a remapped aparc+aseg image as well as a
dictionary of label information (i.e. name, display colours) pertaining to the original and remapped regions.
These label values are input from a user-input lookup table, if specified, and otherwise the default
Freesurfer LUT (/freesurfer/FreeSurferColorLUT.txt).
"""
roigen = pe.Node(interface=cmtk.ROIGen(), name="ROIGen")
cmp_config = cmp.configuration.PipelineConfiguration(parcellation_scheme = "NativeFreesurfer")
cmp_config.parcellation_scheme = "NativeFreesurfer"
roigen.inputs.LUT_file = cmp_config.get_freeview_lut("NativeFreesurfer")['freesurferaparc']
roigen_structspace = roigen.clone('ROIGen_structspace')
"""
The CreateMatrix interface takes in the remapped aparc+aseg image as well as the label dictionary and fiber tracts
and outputs a number of different files. The most important of which is the connectivity network itself, which is stored
as a 'gpickle' and can be loaded using Python's NetworkX package (see CreateMatrix docstring). Also outputted are various
NumPy arrays containing detailed tract information, such as the start and endpoint regions, and statistics on the mean and
standard deviation for the fiber length of each connection. These matrices can be used in the ConnectomeViewer to plot the
specific tracts that connect between user-selected regions.
"""
creatematrix = pe.Node(interface=cmtk.CreateMatrix(), name="CreateMatrix")
creatematrix.inputs.count_region_intersections = True
createnodes = pe.Node(interface=cmtk.CreateNodes(), name="CreateNodes")
createnodes.inputs.resolution_network_file = cmp_config.parcellation['freesurferaparc']['node_information_graphml']
"""
Here we define the endpoint of this tutorial, which is the CFFConverter node, as well as a few nodes which use
the Nipype Merge utility. These are useful for passing lists of the files we want packaged in our CFF file.
"""
CFFConverter = pe.Node(interface=cmtk.CFFConverter(), name="CFFConverter")
giftiSurfaces = pe.Node(interface=util.Merge(8), name="GiftiSurfaces")
giftiLabels = pe.Node(interface=util.Merge(2), name="GiftiLabels")
niftiVolumes = pe.Node(interface=util.Merge(3), name="NiftiVolumes")
fiberDataArrays = pe.Node(interface=util.Merge(4), name="FiberDataArrays")
gpickledNetworks = pe.Node(interface=util.Merge(1), name="NetworkFiles")
"""
Since we have now created all our nodes, we can define our workflow and start making connections.
"""
mapping = pe.Workflow(name='mapping')
"""
First, we connect the input node to the early conversion functions.
FreeSurfer input nodes:
"""
mapping.connect([(inputnode, FreeSurferSource,[("subject_id","subject_id")])])
mapping.connect([(inputnode, FreeSurferSourceLH,[("subject_id","subject_id")])])
mapping.connect([(inputnode, FreeSurferSourceRH,[("subject_id","subject_id")])])
"""
Required conversions for processing in Camino:
"""
mapping.connect([(inputnode, image2voxel, [("dwi", "in_file")]),
(inputnode, fsl2scheme, [("bvecs", "bvec_file"),
("bvals", "bval_file")]),
(image2voxel, dtifit,[['voxel_order','in_file']]),
(fsl2scheme, dtifit,[['scheme','scheme_file']])
])
"""
Nifti conversions for the parcellated white matter image (used in Camino's conmap),
and the subject's stripped brain image from Freesurfer:
"""
mapping.connect([(FreeSurferSource, mri_convert_WMParc,[('wmparc','in_file')])])
mapping.connect([(FreeSurferSource, mri_convert_Brain,[('brain','in_file')])])
"""
Surface conversions to GIFTI (pial, white, inflated, and sphere for both hemispheres)
"""
mapping.connect([(FreeSurferSourceLH, mris_convertLH,[('pial','in_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRH,[('pial','in_file')])])
mapping.connect([(FreeSurferSourceLH, mris_convertLHwhite,[('white','in_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRHwhite,[('white','in_file')])])
mapping.connect([(FreeSurferSourceLH, mris_convertLHinflated,[('inflated','in_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRHinflated,[('inflated','in_file')])])
mapping.connect([(FreeSurferSourceLH, mris_convertLHsphere,[('sphere','in_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRHsphere,[('sphere','in_file')])])
"""
The annotation files are converted using the pial surface as a map via the MRIsConvert interface.
One of the functions defined earlier is used to select the lh.aparc.annot and rh.aparc.annot files
specifically (rather than i.e. rh.aparc.a2009s.annot) from the output list given by the FreeSurferSource.
"""
mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels,[('pial','in_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels,[('pial','in_file')])])
mapping.connect([(FreeSurferSourceLH, mris_convertLHlabels, [(('annot', select_aparc_annot), 'annot_file')])])
mapping.connect([(FreeSurferSourceRH, mris_convertRHlabels, [(('annot', select_aparc_annot), 'annot_file')])])
"""
This section coregisters the diffusion-weighted and parcellated white-matter / whole brain images.
At present the conmap node connection is left commented, as there have been recent changes in Camino
code that have presented some users with errors.
"""
mapping.connect([(inputnode, b0Strip,[('dwi','in_file')])])
mapping.connect([(b0Strip, coregister,[('out_file','in_file')])])
mapping.connect([(mri_convert_Brain, coregister,[('out_file','reference')])])
mapping.connect([(coregister, convertxfm,[('out_matrix_file','in_file')])])
mapping.connect([(b0Strip, inverse,[('out_file','reference')])])
mapping.connect([(convertxfm, inverse,[('out_file','in_matrix_file')])])
mapping.connect([(mri_convert_WMParc, inverse,[('out_file','in_file')])])
"""
The tractography pipeline consists of the following nodes. Further information about the tractography
can be found in nipype/examples/dmri_camino_dti.py.
"""
mapping.connect([(b0Strip, track,[("mask_file","seed_file")])])
mapping.connect([(fsl2scheme, dtlutgen,[("scheme","scheme_file")])])
mapping.connect([(dtlutgen, picopdfs,[("dtLUT","luts")])])
mapping.connect([(dtifit, picopdfs,[("tensor_fitted","in_file")])])
mapping.connect([(picopdfs, track,[("pdfs","in_file")])])
"""
Connecting the Fractional Anisotropy and Trace nodes is simple, as they obtain their input from the
tensor fitting. This is also where our voxel- and data-grabbing functions come in. We pass these functions,
along with the original DWI image from the input node, to the header-generating nodes. This ensures that the
files will be correct and readable.
"""
mapping.connect([(dtifit, fa,[("tensor_fitted","in_file")])])
mapping.connect([(fa, analyzeheader_fa,[("fa","in_file")])])
mapping.connect([(inputnode, analyzeheader_fa,[(('dwi', get_vox_dims), 'voxel_dims'),
(('dwi', get_data_dims), 'data_dims')])])
mapping.connect([(fa, fa2nii,[('fa','data_file')])])
mapping.connect([(inputnode, fa2nii,[(('dwi', get_affine), 'affine')])])
mapping.connect([(analyzeheader_fa, fa2nii,[('header', 'header_file')])])
mapping.connect([(dtifit, trace,[("tensor_fitted","in_file")])])
mapping.connect([(trace, analyzeheader_trace,[("trace","in_file")])])
mapping.connect([(inputnode, analyzeheader_trace,[(('dwi', get_vox_dims), 'voxel_dims'),
(('dwi', get_data_dims), 'data_dims')])])
mapping.connect([(trace, trace2nii,[('trace','data_file')])])
mapping.connect([(inputnode, trace2nii,[(('dwi', get_affine), 'affine')])])
mapping.connect([(analyzeheader_trace, trace2nii,[('header', 'header_file')])])
mapping.connect([(dtifit, dteig,[("tensor_fitted","in_file")])])
"""
The output tracts are converted to Trackvis format (and back). Here we also use the voxel- and data-grabbing
functions defined at the beginning of the pipeline.
"""
mapping.connect([(track, camino2trackvis, [('tracked','in_file')]),
(track, vtkstreamlines,[['tracked','in_file']]),
(camino2trackvis, trk2camino,[['trackvis','in_file']])
])
mapping.connect([(inputnode, camino2trackvis,[(('dwi', get_vox_dims), 'voxel_dims'),
(('dwi', get_data_dims), 'data_dims')])])
"""
Here the CMTK connectivity mapping nodes are connected.
The original aparc+aseg image is converted to NIFTI, then registered to
the diffusion image and delivered to the ROIGen node. The remapped parcellation,
original tracts, and label file are then given to CreateMatrix.
"""
mapping.connect(createnodes, 'node_network',
creatematrix, 'resolution_network_file')
mapping.connect([(FreeSurferSource, mri_convert_AparcAseg, [(('aparc_aseg', select_aparc), 'in_file')])])
mapping.connect([(b0Strip, inverse_AparcAseg,[('out_file','reference')])])
mapping.connect([(convertxfm, inverse_AparcAseg,[('out_file','in_matrix_file')])])
mapping.connect([(mri_convert_AparcAseg, inverse_AparcAseg,[('out_file','in_file')])])
mapping.connect([(mri_convert_AparcAseg, roigen_structspace,[('out_file','aparc_aseg_file')])])
mapping.connect([(roigen_structspace, createnodes,[("roi_file","roi_file")])])
mapping.connect([(inverse_AparcAseg, roigen,[("out_file","aparc_aseg_file")])])
mapping.connect([(roigen, creatematrix,[("roi_file","roi_file")])])
mapping.connect([(camino2trackvis, creatematrix,[("trackvis","tract_file")])])
mapping.connect([(inputnode, creatematrix,[("subject_id","out_matrix_file")])])
mapping.connect([(inputnode, creatematrix,[("subject_id","out_matrix_mat_file")])])
"""
The merge nodes defined earlier are used here to create lists of the files which are
destined for the CFFConverter.
"""
mapping.connect([(creatematrix, gpickledNetworks,[("matrix_files","in1")])])
mapping.connect([(mris_convertLH, giftiSurfaces,[("converted","in1")])])
mapping.connect([(mris_convertRH, giftiSurfaces,[("converted","in2")])])
mapping.connect([(mris_convertLHwhite, giftiSurfaces,[("converted","in3")])])
mapping.connect([(mris_convertRHwhite, giftiSurfaces,[("converted","in4")])])
mapping.connect([(mris_convertLHinflated, giftiSurfaces,[("converted","in5")])])
mapping.connect([(mris_convertRHinflated, giftiSurfaces,[("converted","in6")])])
mapping.connect([(mris_convertLHsphere, giftiSurfaces,[("converted","in7")])])
mapping.connect([(mris_convertRHsphere, giftiSurfaces,[("converted","in8")])])
mapping.connect([(mris_convertLHlabels, giftiLabels,[("converted","in1")])])
mapping.connect([(mris_convertRHlabels, giftiLabels,[("converted","in2")])])
mapping.connect([(roigen, niftiVolumes,[("roi_file","in1")])])
mapping.connect([(inputnode, niftiVolumes,[("dwi","in2")])])
mapping.connect([(mri_convert_Brain, niftiVolumes,[("out_file","in3")])])
mapping.connect([(creatematrix, fiberDataArrays,[("endpoint_file","in1")])])
mapping.connect([(creatematrix, fiberDataArrays,[("endpoint_file_mm","in2")])])
mapping.connect([(creatematrix, fiberDataArrays,[("fiber_length_file","in3")])])
mapping.connect([(creatematrix, fiberDataArrays,[("fiber_label_file","in4")])])
"""
This block actually connects the merged lists to the CFF converter. We pass the surfaces
and volumes that are to be included, as well as the tracts and the network itself. The currently
running pipeline (dmri_connectivity.py) is also scraped and included in the CFF file. This
makes it easy for the user to examine the entire processing pathway used to generate the end
product.
"""
CFFConverter.inputs.script_files = op.abspath(inspect.getfile(inspect.currentframe()))
mapping.connect([(giftiSurfaces, CFFConverter,[("out","gifti_surfaces")])])
mapping.connect([(giftiLabels, CFFConverter,[("out","gifti_labels")])])
mapping.connect([(gpickledNetworks, CFFConverter,[("out","gpickled_networks")])])
mapping.connect([(niftiVolumes, CFFConverter,[("out","nifti_volumes")])])
mapping.connect([(fiberDataArrays, CFFConverter,[("out","data_files")])])
mapping.connect([(creatematrix, CFFConverter,[("filtered_tractographies","tract_files")])])
mapping.connect([(inputnode, CFFConverter,[("subject_id","title")])])
"""
Finally, we create another higher-level workflow to connect our mapping workflow with the info and datagrabbing nodes
declared at the beginning. Our tutorial can is now extensible to any arbitrary number of subjects by simply adding
their names to the subject list and their data to the proper folders.
"""
connectivity = pe.Workflow(name="connectivity")
connectivity.base_dir = op.abspath('dmri_connectivity')
connectivity.connect([
(infosource,datasource,[('subject_id', 'subject_id')]),
(datasource,mapping,[('dwi','inputnode.dwi'),
('bvals','inputnode.bvals'),
('bvecs','inputnode.bvecs')
]),
(infosource,mapping,[('subject_id','inputnode.subject_id')])
])
"""
The following functions run the whole workflow and produce graphs describing the processing pipeline.
By default, write_graph outputs a .dot file and a .png image, but here we set it to output the image
as a vector graphic, by passing the format='eps' argument.
"""
if __name__ == '__main__':
connectivity.run()
connectivity.write_graph(format='eps')
"""
The output CFF file of this pipeline can be loaded in the Connectome Viewer (http://www.cmtk.org)
After loading the network into memory it can be examined in 3D or as a connectivity matrix
using the default scripts produced by the Code Oracle.
To compare networks, one must use the MergeCNetworks interface to merge two networks into
a single CFF file. Statistics can then be run using the Network Brain Statistics (NBS) plugin
Surfaces can also be loaded along with their labels from the aparc+aseg file. The tractography
is included in the file so that region-to-region fibers can be individually plotted using the
Code Oracle.
"""
|