1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
======================================
fMRI: surface smooth - FreeSurfer, SPM
======================================
This tutorial illustrates how to perform surface-based smoothing of
cortical data using FreeSurfer_ and then perform firstlevel model and
contrast estimation using SPM_. A surface-based second level glm
illustrates the use of spherical registration and freesurfer's glm
functions.
Preparing environment
=====================
Step 0
------
In order to run this tutorial you need to have SPM_ and FreeSurfer_
tools installed and accessible from matlab/command line. Check by
calling mri_info from the command line.
Step 1
------
Link the *fsaverage* directory for your freesurfer distribution. To do
this type:
::
cd nipype-tutorial/fsdata
ln -s $FREESURFER_HOME/subjects/fsaverage
cd ..
Defining the workflow
=====================
"""
import os # system functions
import nipype.algorithms.modelgen as model # model generation
import nipype.algorithms.rapidart as ra # artifact detection
import nipype.interfaces.freesurfer as fs # freesurfer
import nipype.interfaces.io as nio # i/o routines
import nipype.interfaces.matlab as mlab # how to run matlab
import nipype.interfaces.spm as spm # spm
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
"""
Preliminaries
-------------
Set any package specific configuration.
Setting the subjects directory and the appropriate matlab command to use. if
you want to use a different spm version/path, it should also be entered here.
These are currently being set at the class level, so every node will inherit
these settings. However, these can also be changed or set for an individual
node.
"""
# Tell freesurfer what subjects directory to use
subjects_dir = os.path.abspath('fsdata')
fs.FSCommand.set_default_subjects_dir(subjects_dir)
# Set the way matlab should be called
mlab.MatlabCommand.set_default_matlab_cmd("matlab -nodesktop -nosplash")
# If SPM is not in your MATLAB path you should add it here
mlab.MatlabCommand.set_default_paths('/software/spm8')
"""
Setup preprocessing workflow
----------------------------
"""
preproc = pe.Workflow(name='preproc')
"""
Use :class:`nipype.interfaces.spm.Realign` for motion correction
and register all images to the mean image.
"""
realign = pe.Node(interface=spm.Realign(), name="realign")
realign.inputs.register_to_mean = True
"""
Use :class:`nipype.algorithms.rapidart` to determine which of the
images in the functional series are outliers based on deviations in
intensity or movement.
"""
art = pe.Node(interface=ra.ArtifactDetect(), name="art")
art.inputs.use_differences = [True, False]
art.inputs.use_norm = True
art.inputs.norm_threshold = 1
art.inputs.zintensity_threshold = 3
art.inputs.mask_type = 'file'
art.inputs.parameter_source = 'SPM'
"""
Use :class:`nipype.interfaces.freesurfer.BBRegister` to coregister the mean
functional image generated by realign to the subjects' surfaces.
"""
surfregister = pe.Node(interface=fs.BBRegister(),name='surfregister')
surfregister.inputs.init = 'fsl'
surfregister.inputs.contrast_type = 't2'
"""
Use :class:`nipype.interfaces.io.FreeSurferSource` to retrieve various image
files that are automatically generated by the recon-all process.
"""
FreeSurferSource = pe.Node(interface=nio.FreeSurferSource(), name='fssource')
"""
Use :class:`nipype.interfaces.freesurfer.ApplyVolTransform` to convert the
brainmask generated by freesurfer into the realigned functional space.
"""
ApplyVolTransform = pe.Node(interface=fs.ApplyVolTransform(),
name='applyreg')
ApplyVolTransform.inputs.inverse = True
"""
Use :class:`nipype.interfaces.freesurfer.Binarize` to extract a binary brain
mask.
"""
Threshold = pe.Node(interface=fs.Binarize(),name='threshold')
Threshold.inputs.min = 10
Threshold.inputs.out_type = 'nii'
"""
Two different types of functional data smoothing are performed in this
workflow. The volume smoothing option performs a standard SPM smoothin. using
:class:`nipype.interfaces.spm.Smooth`. In addition, we use a smoothing routine
from freesurfer (:class:`nipype.interfaces.freesurfer.Binarize`) to project the
functional data from the volume to the subjects' surface, smooth it on the
surface and fit it back into the volume forming the cortical ribbon. The
projection uses the average value along a "cortical column". In addition to the
surface smoothing, the rest of the volume is smoothed with a 3d gaussian kernel.
.. note::
It is very important to note that the projection to the surface takes a 3d
manifold to a 2d manifold. Hence the reverse projection, simply fills the
thickness of cortex with the smoothed data. The smoothing is not performed
in a depth specific manner. The output of this branch should only be used
for surface-based analysis and visualization.
"""
volsmooth = pe.Node(interface=spm.Smooth(), name = "volsmooth")
surfsmooth = pe.MapNode(interface=fs.Smooth(proj_frac_avg=(0,1,0.1)), name = "surfsmooth",
iterfield=['in_file'])
"""
We connect up the different nodes to implement the preprocessing workflow.
"""
preproc.connect([(realign, surfregister,[('mean_image', 'source_file')]),
(FreeSurferSource, ApplyVolTransform,[('brainmask','target_file')]),
(surfregister, ApplyVolTransform,[('out_reg_file','reg_file')]),
(realign, ApplyVolTransform,[('mean_image', 'source_file')]),
(ApplyVolTransform, Threshold,[('transformed_file','in_file')]),
(realign, art,[('realignment_parameters','realignment_parameters'),
('realigned_files','realigned_files')]),
(Threshold, art, [('binary_file', 'mask_file')]),
(realign, volsmooth, [('realigned_files', 'in_files')]),
(realign, surfsmooth, [('realigned_files', 'in_file')]),
(surfregister, surfsmooth, [('out_reg_file','reg_file')]),
])
"""
Set up volume analysis workflow
-------------------------------
"""
volanalysis = pe.Workflow(name='volanalysis')
"""
Generate SPM-specific design information using
:class:`nipype.interfaces.spm.SpecifyModel`.
"""
modelspec = pe.Node(interface=model.SpecifySPMModel(), name= "modelspec")
modelspec.inputs.concatenate_runs = True
"""
Generate a first level SPM.mat file for analysis
:class:`nipype.interfaces.spm.Level1Design`.
"""
level1design = pe.Node(interface=spm.Level1Design(), name= "level1design")
level1design.inputs.bases = {'hrf':{'derivs': [0,0]}}
"""
Use :class:`nipype.interfaces.spm.EstimateModel` to determine the
parameters of the model.
"""
level1estimate = pe.Node(interface=spm.EstimateModel(), name="level1estimate")
level1estimate.inputs.estimation_method = {'Classical' : 1}
"""
Use :class:`nipype.interfaces.spm.EstimateContrast` to estimate the
first level contrasts specified in a few steps above.
"""
contrastestimate = pe.Node(interface = spm.EstimateContrast(), name="contrastestimate")
volanalysis.connect([(modelspec,level1design,[('session_info','session_info')]),
(level1design,level1estimate,[('spm_mat_file','spm_mat_file')]),
(level1estimate,contrastestimate,[('spm_mat_file','spm_mat_file'),
('beta_images','beta_images'),
('residual_image','residual_image')]),
])
"""
Set up surface analysis workflow
--------------------------------
We simply clone the volume analysis workflow.
"""
surfanalysis = volanalysis.clone(name='surfanalysis')
"""
Set up volume normalization workflow
------------------------------------
The volume analysis is performed in individual space. Therefore, post analysis
we normalize the contrast images to MNI space.
"""
volnorm = pe.Workflow(name='volnormconimages')
"""
Use :class:`nipype.interfaces.freesurfer.MRIConvert` to convert the brainmask,
an mgz file and the contrast images (nifti-1 img/hdr pairs), to single volume
nifti images.
"""
convert = pe.Node(interface=fs.MRIConvert(out_type='nii'),name='convert2nii')
convert2 = pe.MapNode(interface=fs.MRIConvert(out_type='nii'),
iterfield=['in_file'],
name='convertimg2nii')
"""
Use :class:`nipype.interfaces.spm.Segment` to segment the structural image and
generate the transformation file to MNI space.
.. note::
Segment takes longer than usual because the nose is wrapped behind
the head in the structural image.
"""
segment = pe.Node(interface=spm.Segment(), name='segment')
"""
Use :class:`nipype.interfaces.freesurfer.ApplyVolTransform` to convert contrast
images into freesurfer space.
"""
normwreg = pe.MapNode(interface=fs.ApplyVolTransform(),
iterfield=['source_file'],
name='applyreg2con')
"""
Use :class:`nipype.interfaces.spm.Normalize` to normalize the contrast images
to MNI space
"""
normalize = pe.Node(interface=spm.Normalize(jobtype='write'),
name='norm2mni')
"""
Connect up the volume normalization components
"""
volnorm.connect([(convert, segment, [('out_file','data')]),
(convert2, normwreg, [('out_file', 'source_file')]),
(segment, normalize, [('transformation_mat', 'parameter_file')]),
(normwreg, normalize, [('transformed_file','apply_to_files')]),
])
"""
Preproc + Analysis + VolumeNormalization workflow
-------------------------------------------------
Connect up the lower level workflows into an integrated analysis. In addition,
we add an input node that specifies all the inputs needed for this
workflow. Thus, one can import this workflow and connect it to their own data
sources. An example with the nifti-tutorial data is provided below.
For this workflow the only necessary inputs are the functional images, a
freesurfer subject id corresponding to recon-all processed data, the session
information for the functional runs and the contrasts to be evaluated.
"""
inputnode = pe.Node(interface=util.IdentityInterface(fields=['func',
'subject_id',
'session_info',
'contrasts']),
name='inputnode')
"""
Connect the components into an integrated workflow.
"""
l1pipeline = pe.Workflow(name='firstlevel')
l1pipeline.connect([(inputnode,preproc,[('func','realign.in_files'),
('subject_id','surfregister.subject_id'),
('subject_id','fssource.subject_id'),
]),
(inputnode, volanalysis,[('session_info','modelspec.subject_info'),
('contrasts','contrastestimate.contrasts')]),
(inputnode, surfanalysis,[('session_info','modelspec.subject_info'),
('contrasts','contrastestimate.contrasts')]),
])
# attach volume and surface model specification and estimation components
l1pipeline.connect([(preproc, volanalysis, [('realign.realignment_parameters',
'modelspec.realignment_parameters'),
('volsmooth.smoothed_files',
'modelspec.functional_runs'),
('art.outlier_files',
'modelspec.outlier_files'),
('threshold.binary_file',
'level1design.mask_image')]),
(preproc, surfanalysis, [('realign.realignment_parameters',
'modelspec.realignment_parameters'),
('surfsmooth.smoothed_file',
'modelspec.functional_runs'),
('art.outlier_files',
'modelspec.outlier_files'),
('threshold.binary_file',
'level1design.mask_image')])
])
# attach volume contrast normalization components
l1pipeline.connect([(preproc, volnorm, [('fssource.orig','convert2nii.in_file'),
('surfregister.out_reg_file','applyreg2con.reg_file'),
('fssource.orig','applyreg2con.target_file')]),
(volanalysis, volnorm, [('contrastestimate.con_images',
'convertimg2nii.in_file'),
])
])
"""
Data specific components
------------------------
The nipype tutorial contains data for two subjects. Subject data
is in two subdirectories, ``s1`` and ``s2``. Each subject directory
contains four functional volumes: f3.nii, f5.nii, f7.nii, f10.nii. And
one anatomical volume named struct.nii.
Below we set some variables to inform the ``datasource`` about the
layout of our data. We specify the location of the data, the subject
sub-directories and a dictionary that maps each run to a mnemonic (or
field) for the run type (``struct`` or ``func``). These fields become
the output fields of the ``datasource`` node in the pipeline.
In the example below, run 'f3' is of type 'func' and gets mapped to a
nifti filename through a template '%s.nii'. So 'f3' would become
'f3.nii'.
"""
# Specify the location of the data.
data_dir = os.path.abspath('data')
# Specify the subject directories
subject_list = ['s1', 's3']
# Map field names to individual subject runs.
info = dict(func=[['subject_id', ['f3','f5','f7','f10']]],
struct=[['subject_id','struct']])
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']), name="infosource")
"""Here we set up iteration over all the subjects. The following line
is a particular example of the flexibility of the system. The
``datasource`` attribute ``iterables`` tells the pipeline engine that
it should repeat the analysis on each of the items in the
``subject_list``. In the current example, the entire first level
preprocessing and estimation will be repeated for each subject
contained in subject_list.
"""
infosource.iterables = ('subject_id', subject_list)
"""
Now we create a :class:`nipype.interfaces.io.DataGrabber` object and
fill in the information from above about the layout of our data. The
:class:`nipype.pipeline.NodeWrapper` module wraps the interface object
and provides additional housekeeping and pipeline specific
functionality.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '%s/%s.nii'
datasource.inputs.template_args = info
"""
Set preprocessing parameters
----------------------------
"""
l1pipeline.inputs.preproc.fssource.subjects_dir = subjects_dir
l1pipeline.inputs.preproc.volsmooth.fwhm = 4
l1pipeline.inputs.preproc.surfsmooth.surface_fwhm = 5
l1pipeline.inputs.preproc.surfsmooth.vol_fwhm = 4
"""
Experimental paradigm specific components
-----------------------------------------
Here we create a function that returns subject-specific information
about the experimental paradigm. This is used by the
:class:`nipype.interfaces.spm.SpecifyModel` to create the information
necessary to generate an SPM design matrix. In this tutorial, the same
paradigm was used for every participant.
"""
def subjectinfo(subject_id):
from nipype.interfaces.base import Bunch
from copy import deepcopy
print "Subject ID: %s\n"%str(subject_id)
output = []
names = ['Task-Odd','Task-Even']
for r in range(4):
onsets = [range(15,240,60),range(45,240,60)]
output.insert(r,
Bunch(conditions=names,
onsets=deepcopy(onsets),
durations=[[15] for s in names],
))
return output
"""Setup the contrast structure that needs to be evaluated. This is a
list of lists. The inner list specifies the contrasts and has the
following format - [Name,Stat,[list of condition names],[weights on
those conditions]. The condition names must match the `names` listed
in the `subjectinfo` function described above.
"""
cont1 = ('Task>Baseline','T', ['Task-Odd','Task-Even'],[0.5,0.5])
cont2 = ('Task-Odd>Task-Even','T', ['Task-Odd','Task-Even'],[1,-1])
contrasts = [cont1,cont2]
"""
Set up node specific inputs
---------------------------
We replicate the modelspec parameters separately for the surface- and
volume-based analysis.
"""
modelspecref = l1pipeline.inputs.volanalysis.modelspec
modelspecref.input_units = 'secs'
modelspecref.time_repetition = 3.
modelspecref.high_pass_filter_cutoff = 120
modelspecref = l1pipeline.inputs.surfanalysis.modelspec
modelspecref.input_units = 'secs'
modelspecref.time_repetition = 3.
modelspecref.high_pass_filter_cutoff = 120
l1designref = l1pipeline.inputs.volanalysis.level1design
l1designref.timing_units = modelspecref.output_units
l1designref.interscan_interval = modelspecref.time_repetition
l1designref = l1pipeline.inputs.surfanalysis.level1design
l1designref.timing_units = modelspecref.output_units
l1designref.interscan_interval = modelspecref.time_repetition
l1pipeline.inputs.inputnode.contrasts = contrasts
"""
Setup the pipeline
------------------
The nodes created above do not describe the flow of data. They merely
describe the parameters used for each function. In this section we
setup the connections between the nodes such that appropriate outputs
from nodes are piped into appropriate inputs of other nodes.
Use the :class:`nipype.pipeline.engine.Workfow` to create a
graph-based execution pipeline for first level analysis.
"""
level1 = pe.Workflow(name="level1")
level1.base_dir = os.path.abspath('volsurf_tutorial/workingdir')
level1.connect([(infosource, datasource, [('subject_id', 'subject_id')]),
(datasource,l1pipeline,[('func','inputnode.func')]),
(infosource,l1pipeline,[('subject_id','inputnode.subject_id'),
(('subject_id', subjectinfo),
'inputnode.session_info')]),
])
"""
Store the output
----------------
Create a datasink node to store the contrast images and registration info
"""
datasink = pe.Node(interface=nio.DataSink(), name="datasink")
datasink.inputs.base_directory = os.path.abspath('volsurf_tutorial/l1out')
datasink.inputs.substitutions = []
def getsubs(subject_id):
subs = [('_subject_id_%s/'%subject_id,'')]
return subs
# store relevant outputs from various stages of the 1st level analysis
level1.connect([(infosource, datasink,[('subject_id','container'),
(('subject_id', getsubs), 'substitutions')
]),
(l1pipeline, datasink,[('surfanalysis.contrastestimate.con_images','contrasts'),
('preproc.surfregister.out_reg_file','registrations'),
])
])
"""
Run the analysis pipeline and also create a dot+png (if graphviz is available)
that visually represents the workflow.
"""
if __name__ == '__main__':
level1.run()
level1.write_graph(graph2use='flat')
"""
Level2 surface-based pipeline
-----------------------------
Create a level2 workflow
"""
l2flow = pe.Workflow(name='l2out')
l2flow.base_dir = os.path.abspath('volsurf_tutorial')
"""
Setup a dummy node to iterate over contrasts and hemispheres
"""
l2inputnode = pe.Node(interface=util.IdentityInterface(fields=['contrasts',
'hemi']),
name='inputnode')
l2inputnode.iterables = [('contrasts', range(1,len(contrasts)+1)),
('hemi', ['lh','rh'])]
"""
Use a datagrabber node to collect contrast images and registration files
"""
l2source = pe.Node(interface=nio.DataGrabber(infields=['con_id'],
outfields=['con','reg']),
name='l2source')
l2source.inputs.base_directory = os.path.abspath('volsurf_tutorial/l1out')
l2source.inputs.template = '*'
l2source.inputs.field_template = dict(con='*/contrasts/con_%04d.img',
reg='*/registrations/*.dat')
l2source.inputs.template_args = dict(con=[['con_id']],reg=[[]])
l2flow.connect(l2inputnode, 'contrasts', l2source, 'con_id')
"""
Merge contrast images and registration files
"""
mergenode = pe.Node(interface=util.Merge(2, axis='hstack'),
name='merge')
def ordersubjects(files, subj_list):
outlist = []
for s in subj_list:
for f in files:
if '/%s/'%s in f:
outlist.append(f)
continue
print outlist
return outlist
l2flow.connect(l2source,('con', ordersubjects, subject_list), mergenode, 'in1')
l2flow.connect(l2source,('reg', ordersubjects, subject_list), mergenode, 'in2')
"""
Concatenate contrast images projected to fsaverage
"""
l2concat = pe.Node(interface=fs.MRISPreproc(), name='concat')
l2concat.inputs.target = 'fsaverage'
l2concat.inputs.fwhm = 5
def list2tuple(listoflist):
return [tuple(x) for x in listoflist]
l2flow.connect(l2inputnode, 'hemi', l2concat, 'hemi')
l2flow.connect(mergenode, ('out', list2tuple), l2concat, 'vol_measure_file')
"""
Perform a one sample t-test
"""
l2ttest = pe.Node(interface=fs.OneSampleTTest(), name='onesample')
l2flow.connect(l2concat, 'out_file', l2ttest, 'in_file')
"""
Run the analysis pipeline and also create a dot+png (if graphviz is available)
that visually represents the workflow.
"""
if __name__ == '__main__':
l2flow.run()
l2flow.write_graph(graph2use='flat')
|