1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
============================
fMRI: OpenfMRI.org data, FSL
============================
A growing number of datasets are available on `OpenfMRI <http://openfmri.org>`_.
This script demonstrates how to use nipype to analyze a data set.
python fmri_openfmri.py --datasetdir ds107
"""
from glob import glob
import os
import nipype.pipeline.engine as pe
import nipype.algorithms.modelgen as model
import nipype.algorithms.rapidart as ra
import nipype.interfaces.fsl as fsl
import nipype.interfaces.io as nio
import nipype.interfaces.utility as niu
from nipype.workflows.fmri.fsl import (create_featreg_preproc,
create_modelfit_workflow,
create_fixed_effects_flow)
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
def get_subjectinfo(subject_id, base_dir, task_id, model_id):
"""Get info for a given subject
Parameters
----------
subject_id : string
Subject identifier (e.g., sub001)
base_dir : string
Path to base directory of the dataset
task_id : int
Which task to process
model_id : int
Which model to process
Returns
-------
run_ids : list of ints
Run numbers
conds : list of str
Condition names
TR : float
Repetition time
"""
from glob import glob
import os
import numpy as np
condition_info = []
cond_file = os.path.join(base_dir, 'models', 'model%03d' % model_id,
'condition_key.txt')
with open(cond_file, 'rt') as fp:
for line in fp:
info = line.strip().split()
condition_info.append([info[0], info[1], ' '.join(info[2:])])
if len(condition_info) == 0:
raise ValueError('No condition info found in %s' % cond_file)
taskinfo = np.array(condition_info)
n_tasks = len(np.unique(taskinfo[:, 0]))
conds = []
run_ids = []
if task_id > n_tasks:
raise ValueError('Task id %d does not exist' % task_id)
for idx in range(n_tasks):
taskidx = np.where(taskinfo[:, 0] == 'task%03d' % (idx + 1))
conds.append([condition.replace(' ', '_') for condition
in taskinfo[taskidx[0], 2]])
files = glob(os.path.join(base_dir,
subject_id,
'BOLD',
'task%03d_run*' % (idx + 1)))
run_ids.insert(idx, range(1, len(files) + 1))
TR = np.genfromtxt(os.path.join(base_dir, 'scan_key.txt'))[1]
return run_ids[task_id - 1], conds[task_id - 1], TR
def analyze_openfmri_dataset(data_dir, subject=None, model_id=None, work_dir=None):
"""Analyzes an open fmri dataset
Parameters
----------
data_dir : str
Path to the base data directory
work_dir : str
Nipype working directory (defaults to cwd)
"""
"""
Load nipype workflows
"""
preproc = create_featreg_preproc(whichvol='first')
modelfit = create_modelfit_workflow()
fixed_fx = create_fixed_effects_flow()
"""
Remove the plotting connection so that plot iterables don't propagate
to the model stage
"""
preproc.disconnect(preproc.get_node('plot_motion'), 'out_file',
preproc.get_node('outputspec'), 'motion_plots')
"""
Set up openfmri data specific components
"""
subjects = [path.split(os.path.sep)[-1] for path in
glob(os.path.join(data_dir, 'sub*'))]
infosource = pe.Node(niu.IdentityInterface(fields=['subject_id',
'model_id']),
name='infosource')
if subject is None:
infosource.iterables = [('subject_id', subjects),
('model_id', [model_id])]
else:
infosource.iterables = [('subject_id',
[subjects[subjects.index(subject)]]),
('model_id', [model_id])]
subjinfo = pe.Node(niu.Function(input_names=['subject_id', 'base_dir',
'task_id', 'model_id'],
output_names=['run_id', 'conds', 'TR'],
function=get_subjectinfo),
name='subjectinfo')
subjinfo.inputs.base_dir = data_dir
"""
Return data components as anat, bold and behav
"""
datasource = pe.Node(nio.DataGrabber(infields=['subject_id', 'run_id',
'model_id'],
outfields=['anat', 'bold', 'behav']),
name='datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '*'
datasource.inputs.field_template = {'anat': '%s/anatomy/highres001.nii.gz',
'bold': '%s/BOLD/task001_r*/bold.nii.gz',
'behav': ('%s/model/model%03d/onsets/task001_'
'run%03d/cond*.txt')}
datasource.inputs.template_args = {'anat': [['subject_id']],
'bold': [['subject_id']],
'behav': [['subject_id', 'model_id',
'run_id']]}
datasource.inputs.sorted = True
"""
Create meta workflow
"""
wf = pe.Workflow(name='openfmri')
wf.connect(infosource, 'subject_id', subjinfo, 'subject_id')
wf.connect(infosource, 'model_id', subjinfo, 'model_id')
wf.connect(infosource, 'subject_id', datasource, 'subject_id')
wf.connect(infosource, 'model_id', datasource, 'model_id')
wf.connect(subjinfo, 'run_id', datasource, 'run_id')
wf.connect([(datasource, preproc, [('bold', 'inputspec.func')]),
])
def get_highpass(TR, hpcutoff):
return hpcutoff / (2 * TR)
gethighpass = pe.Node(niu.Function(input_names=['TR', 'hpcutoff'],
output_names=['highpass'],
function=get_highpass),
name='gethighpass')
wf.connect(subjinfo, 'TR', gethighpass, 'TR')
wf.connect(gethighpass, 'highpass', preproc, 'inputspec.highpass')
"""
Setup a basic set of contrasts, a t-test per condition
"""
def get_contrasts(base_dir, model_id, conds):
import numpy as np
import os
contrast_file = os.path.join(base_dir, 'models', 'model%03d' % model_id,
'task_contrasts.txt')
contrast_def = np.genfromtxt(contrast_file, dtype=object)
contrasts = []
for row in contrast_def:
con = [row[0], 'T', ['cond%03d' % i for i in range(len(conds))],
row[1:].astype(float).tolist()]
contrasts.append(con)
return contrasts
contrastgen = pe.Node(niu.Function(input_names=['base_dir', 'model_id',
'conds'],
output_names=['contrasts'],
function=get_contrasts),
name='contrastgen')
contrastgen.inputs.base_dir = data_dir
art = pe.MapNode(interface=ra.ArtifactDetect(use_differences=[True, False],
use_norm=True,
norm_threshold=1,
zintensity_threshold=3,
parameter_source='FSL',
mask_type='file'),
iterfield=['realigned_files', 'realignment_parameters',
'mask_file'],
name="art")
modelspec = pe.Node(interface=model.SpecifyModel(),
name="modelspec")
modelspec.inputs.input_units = 'secs'
wf.connect(subjinfo, 'TR', modelspec, 'time_repetition')
wf.connect(datasource, 'behav', modelspec, 'event_files')
wf.connect(subjinfo, 'TR', modelfit, 'inputspec.interscan_interval')
wf.connect(subjinfo, 'conds', contrastgen, 'conds')
wf.connect(infosource, 'model_id', contrastgen, 'model_id')
wf.connect(contrastgen, 'contrasts', modelfit, 'inputspec.contrasts')
wf.connect([(preproc, art, [('outputspec.motion_parameters',
'realignment_parameters'),
('outputspec.realigned_files',
'realigned_files'),
('outputspec.mask', 'mask_file')]),
(preproc, modelspec, [('outputspec.highpassed_files',
'functional_runs'),
('outputspec.motion_parameters',
'realignment_parameters')]),
(art, modelspec, [('outlier_files', 'outlier_files')]),
(modelspec, modelfit, [('session_info',
'inputspec.session_info')]),
(preproc, modelfit, [('outputspec.highpassed_files',
'inputspec.functional_data')])
])
"""
Reorder the copes so that now it combines across runs
"""
def sort_copes(files):
numelements = len(files[0])
outfiles = []
for i in range(numelements):
outfiles.insert(i, [])
for j, elements in enumerate(files):
outfiles[i].append(elements[i])
return outfiles
def num_copes(files):
return len(files)
pickfirst = lambda x: x[0]
wf.connect([(preproc, fixed_fx, [(('outputspec.mask', pickfirst),
'flameo.mask_file')]),
(modelfit, fixed_fx, [(('outputspec.copes', sort_copes),
'inputspec.copes'),
('outputspec.dof_file',
'inputspec.dof_files'),
(('outputspec.varcopes',
sort_copes),
'inputspec.varcopes'),
(('outputspec.copes', num_copes),
'l2model.num_copes'),
])
])
"""
Connect to a datasink
"""
def get_subs(subject_id, conds):
subs = [('_subject_id_%s/' % subject_id, '')]
for i in range(len(conds)):
subs.append(('_flameo%d/cope1.' % i, 'cope%02d.' % (i + 1)))
subs.append(('_flameo%d/varcope1.' % i, 'varcope%02d.' % (i + 1)))
subs.append(('_flameo%d/zstat1.' % i, 'zstat%02d.' % (i + 1)))
subs.append(('_flameo%d/tstat1.' % i, 'tstat%02d.' % (i + 1)))
subs.append(('_flameo%d/res4d.' % i, 'res4d%02d.' % (i + 1)))
return subs
subsgen = pe.Node(niu.Function(input_names=['subject_id', 'conds'],
output_names=['substitutions'],
function=get_subs),
name='subsgen')
datasink = pe.Node(interface=nio.DataSink(),
name="datasink")
wf.connect(infosource, 'subject_id', datasink, 'container')
wf.connect(infosource, 'subject_id', subsgen, 'subject_id')
wf.connect(subjinfo, 'conds', subsgen, 'conds')
wf.connect(subsgen, 'substitutions', datasink, 'substitutions')
wf.connect([(fixed_fx.get_node('outputspec'), datasink,
[('res4d', 'res4d'),
('copes', 'copes'),
('varcopes', 'varcopes'),
('zstats', 'zstats'),
('tstats', 'tstats')])
])
"""
Set processing parameters
"""
hpcutoff = 120.
subjinfo.inputs.task_id = 1
preproc.inputs.inputspec.fwhm = 6.0
gethighpass.inputs.hpcutoff = hpcutoff
modelspec.inputs.high_pass_filter_cutoff = hpcutoff
modelfit.inputs.inputspec.bases = {'dgamma': {'derivs': True}}
modelfit.inputs.inputspec.model_serial_correlations = True
modelfit.inputs.inputspec.film_threshold = 1000
if work_dir is None:
work_dir = os.path.join(os.getcwd(), 'working')
wf.base_dir = work_dir
datasink.inputs.base_directory = os.path.join(work_dir, 'output')
wf.config['execution'] = dict(crashdump_dir=os.path.join(work_dir,
'crashdumps'),
stop_on_first_crash=True)
wf.run('MultiProc', plugin_args={'n_procs': 2})
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(prog='fmri_openfmri.py',
description=__doc__)
parser.add_argument('--datasetdir', required=True)
parser.add_argument('--subject', default=None)
parser.add_argument('--model', default=1)
args = parser.parse_args()
analyze_openfmri_dataset(data_dir=os.path.abspath(args.datasetdir),
subject=args.subject,
model_id=int(args.model))
|