1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
==============
fMRI: SPM, FSL
==============
The fmri_spm.py integrates several interfaces to perform a first
and second level analysis on a two-subject data set. The tutorial can
be found in the examples folder. Run the tutorial from inside the
nipype tutorial directory:
python fmri_spm.py
Import necessary modules from nipype."""
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.spm as spm # spm
import nipype.interfaces.matlab as mlab # how to run matlab
import nipype.interfaces.fsl as fsl # fsl
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
import nipype.algorithms.rapidart as ra # artifact detection
import nipype.algorithms.modelgen as model # model specification
import os # system functions
"""
Preliminaries
-------------
Set any package specific configuration. The output file format
for FSL routines is being set to uncompressed NIFTI and a specific
version of matlab is being used. The uncompressed format is required
because SPM does not handle compressed NIFTI.
"""
# Tell fsl to generate all output in uncompressed nifti format
fsl.FSLCommand.set_default_output_type('NIFTI')
# Set the way matlab should be called
mlab.MatlabCommand.set_default_matlab_cmd("matlab -nodesktop -nosplash")
"""The nipype tutorial contains data for two subjects. Subject data
is in two subdirectories, ``s1`` and ``s2``. Each subject directory
contains four functional volumes: f3.nii, f5.nii, f7.nii, f10.nii. And
one anatomical volume named struct.nii.
Below we set some variables to inform the ``datasource`` about the
layout of our data. We specify the location of the data, the subject
sub-directories and a dictionary that maps each run to a mnemonic (or
field) for the run type (``struct`` or ``func``). These fields become
the output fields of the ``datasource`` node in the pipeline.
In the example below, run 'f3' is of type 'func' and gets mapped to a
nifti filename through a template '%s.nii'. So 'f3' would become
'f3.nii'.
"""
# Specify the location of the data.
data_dir = os.path.abspath('data')
# Specify the subject directories
subject_list = ['s1', 's3']
# Map field names to individual subject runs.
info = dict(func=[['subject_id', ['f3','f5','f7','f10']]],
struct=[['subject_id','struct']])
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']),
name="infosource")
"""Here we set up iteration over all the subjects. The following line
is a particular example of the flexibility of the system. The
``datasource`` attribute ``iterables`` tells the pipeline engine that
it should repeat the analysis on each of the items in the
``subject_list``. In the current example, the entire first level
preprocessing and estimation will be repeated for each subject
contained in subject_list.
"""
infosource.iterables = ('subject_id', subject_list)
"""
Preprocessing pipeline nodes
----------------------------
Now we create a :class:`nipype.interfaces.io.DataSource` object and
fill in the information from above about the layout of our data. The
:class:`nipype.pipeline.NodeWrapper` module wraps the interface object
and provides additional housekeeping and pipeline specific
functionality.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '%s/%s.nii'
datasource.inputs.template_args = info
"""Use :class:`nipype.interfaces.spm.Realign` for motion correction
and register all images to the mean image.
"""
realign = pe.Node(interface=spm.Realign(), name="realign")
realign.inputs.register_to_mean = True
"""Use :class:`nipype.algorithms.rapidart` to determine which of the
images in the functional series are outliers based on deviations in
intensity or movement.
"""
art = pe.Node(interface=ra.ArtifactDetect(), name="art")
art.inputs.use_differences = [True, False]
art.inputs.use_norm = True
art.inputs.norm_threshold = 1
art.inputs.zintensity_threshold = 3
art.inputs.mask_type = 'file'
art.inputs.parameter_source = 'SPM'
"""Skull strip structural images using
:class:`nipype.interfaces.fsl.BET`.
"""
skullstrip = pe.Node(interface=fsl.BET(), name="skullstrip")
skullstrip.inputs.mask = True
"""Use :class:`nipype.interfaces.spm.Coregister` to perform a rigid
body registration of the functional data to the structural data.
"""
coregister = pe.Node(interface=spm.Coregister(), name="coregister")
coregister.inputs.jobtype = 'estimate'
"""Warp functional and structural data to SPM's T1 template using
:class:`nipype.interfaces.spm.Normalize`. The tutorial data set
includes the template image, T1.nii.
"""
normalize = pe.Node(interface=spm.Normalize(), name = "normalize")
normalize.inputs.template = os.path.abspath('data/T1.nii')
"""Smooth the functional data using
:class:`nipype.interfaces.spm.Smooth`.
"""
smooth = pe.Node(interface=spm.Smooth(), name = "smooth")
fwhmlist = [4]
smooth.iterables = ('fwhm',fwhmlist)
"""
Set up analysis components
--------------------------
Here we create a function that returns subject-specific information
about the experimental paradigm. This is used by the
:class:`nipype.interfaces.spm.SpecifyModel` to create the information
necessary to generate an SPM design matrix. In this tutorial, the same
paradigm was used for every participant.
"""
def subjectinfo(subject_id):
from nipype.interfaces.base import Bunch
from copy import deepcopy
print "Subject ID: %s\n"%str(subject_id)
output = []
names = ['Task-Odd','Task-Even']
for r in range(4):
onsets = [range(15,240,60),range(45,240,60)]
output.insert(r,
Bunch(conditions=names,
onsets=deepcopy(onsets),
durations=[[15] for s in names]))
return output
"""Setup the contrast structure that needs to be evaluated. This is a
list of lists. The inner list specifies the contrasts and has the
following format - [Name,Stat,[list of condition names],[weights on
those conditions]. The condition names must match the `names` listed
in the `subjectinfo` function described above.
"""
cont1 = ('Task>Baseline','T', ['Task-Odd','Task-Even'],[0.5,0.5])
cont2 = ('Task-Odd>Task-Even','T', ['Task-Odd','Task-Even'],[1,-1])
contrasts = [cont1,cont2]
"""Generate SPM-specific design information using
:class:`nipype.interfaces.spm.SpecifyModel`.
"""
modelspec = pe.Node(interface=model.SpecifySPMModel(), name= "modelspec")
modelspec.inputs.concatenate_runs = True
modelspec.inputs.input_units = 'secs'
modelspec.inputs.output_units = 'secs'
modelspec.inputs.time_repetition = 3.
modelspec.inputs.high_pass_filter_cutoff = 120
"""Generate a first level SPM.mat file for analysis
:class:`nipype.interfaces.spm.Level1Design`.
"""
level1design = pe.Node(interface=spm.Level1Design(), name= "level1design")
level1design.inputs.timing_units = modelspec.inputs.output_units
level1design.inputs.interscan_interval = modelspec.inputs.time_repetition
level1design.inputs.bases = {'hrf':{'derivs': [0,0]}}
"""Use :class:`nipype.interfaces.spm.EstimateModel` to determine the
parameters of the model.
"""
level1estimate = pe.Node(interface=spm.EstimateModel(), name="level1estimate")
level1estimate.inputs.estimation_method = {'Classical' : 1}
"""Use :class:`nipype.interfaces.spm.EstimateContrast` to estimate the
first level contrasts specified in a few steps above.
"""
contrastestimate = pe.Node(interface = spm.EstimateContrast(), name="contrastestimate")
contrastestimate.inputs.contrasts = contrasts
"""
Setup the pipeline
------------------
The nodes created above do not describe the flow of data. They merely
describe the parameters used for each function. In this section we
setup the connections between the nodes such that appropriate outputs
from nodes are piped into appropriate inputs of other nodes.
Use the :class:`nipype.pipeline.engine.Pipeline` to create a
graph-based execution pipeline for first level analysis. The config
options tells the pipeline engine to use `workdir` as the disk
location to use when running the processes and keeping their
outputs. The `use_parameterized_dirs` tells the engine to create
sub-directories under `workdir` corresponding to the iterables in the
pipeline. Thus for this pipeline there will be subject specific
sub-directories.
The ``nipype.pipeline.engine.Pipeline.connect`` function creates the
links between the processes, i.e., how data should flow in and out of
the processing nodes.
"""
l1pipeline = pe.Workflow(name="level1")
l1pipeline.base_dir = os.path.abspath('spm_tutorial/workingdir')
l1pipeline.connect([(infosource, datasource, [('subject_id', 'subject_id')]),
(datasource,realign,[('func','in_files')]),
(realign,coregister,[('mean_image', 'source'),
('realigned_files','apply_to_files')]),
(datasource,coregister,[('struct', 'target')]),
(datasource,normalize,[('struct', 'source')]),
(coregister, normalize, [('coregistered_files','apply_to_files')]),
(normalize, smooth, [('normalized_files', 'in_files')]),
(infosource,modelspec,[(('subject_id', subjectinfo),
'subject_info')]),
(realign,modelspec,[('realignment_parameters','realignment_parameters')]),
(smooth,modelspec,[('smoothed_files','functional_runs')]),
(normalize,skullstrip,[('normalized_source','in_file')]),
(realign,art,[('realignment_parameters','realignment_parameters')]),
(normalize,art,[('normalized_files','realigned_files')]),
(skullstrip,art,[('mask_file','mask_file')]),
(art,modelspec,[('outlier_files','outlier_files')]),
(modelspec,level1design,[('session_info','session_info')]),
(skullstrip,level1design,[('mask_file','mask_image')]),
(level1design,level1estimate,[('spm_mat_file','spm_mat_file')]),
(level1estimate,contrastestimate,[('spm_mat_file','spm_mat_file'),
('beta_images','beta_images'),
('residual_image','residual_image')]),
])
"""
Setup storage results
---------------------
Use :class:`nipype.interfaces.io.DataSink` to store selected outputs
from the pipeline in a specific location. This allows the user to
selectively choose important output bits from the analysis and keep
them.
The first step is to create a datasink node and then to connect
outputs from the modules above to storage locations. These take the
following form directory_name[.[@]subdir] where parts between [] are
optional. For example 'realign.@mean' below creates a directory called
realign in 'l1output/subject_id/' and stores the mean image output
from the Realign process in the realign directory. If the @ is left
out, then a sub-directory with the name 'mean' would be created and
the mean image would be copied to that directory.
"""
datasink = pe.Node(interface=nio.DataSink(), name="datasink")
datasink.inputs.base_directory = os.path.abspath('spm_tutorial/l1output')
def getstripdir(subject_id):
import os
return os.path.join(os.path.abspath('spm_tutorial/workingdir'),'_subject_id_%s' % subject_id)
# store relevant outputs from various stages of the 1st level analysis
l1pipeline.connect([(infosource,datasink,[('subject_id','container'),
(('subject_id', getstripdir),'strip_dir')]),
(realign,datasink,[('mean_image','realign.@mean'),
('realignment_parameters','realign.@param')]),
(art,datasink,[('outlier_files','art.@outliers'),
('statistic_files','art.@stats')]),
(level1design,datasink,[('spm_mat_file','model.pre-estimate')]),
(level1estimate,datasink,[('spm_mat_file','model.@spm'),
('beta_images','model.@beta'),
('mask_image','model.@mask'),
('residual_image','model.@res'),
('RPVimage','model.@rpv')]),
(contrastestimate,datasink,[('con_images','contrasts.@con'),
('spmT_images','contrasts.@T')]),
])
"""
Setup level 2 pipeline
----------------------
Use :class:`nipype.interfaces.io.DataGrabber` to extract the contrast
images across a group of first level subjects. Unlike the previous
pipeline that iterated over subjects, this pipeline will iterate over
contrasts.
"""
# collect all the con images for each contrast.
contrast_ids = range(1,len(contrasts)+1)
l2source = pe.Node(nio.DataGrabber(infields=['fwhm', 'con']), name="l2source")
l2source.inputs.template=os.path.abspath('spm_tutorial/l1output/*/con*/*/_fwhm_%d/con_%04d.img')
# iterate over all contrast images
l2source.iterables = [('fwhm',fwhmlist),
('con',contrast_ids)]
"""Use :class:`nipype.interfaces.spm.OneSampleTTestDesign` to perform a
simple statistical analysis of the contrasts from the group of
subjects (n=2 in this example).
"""
# setup a 1-sample t-test node
onesamplettestdes = pe.Node(interface=spm.OneSampleTTestDesign(), name="onesampttestdes")
l2estimate = pe.Node(interface=spm.EstimateModel(), name="level2estimate")
l2estimate.inputs.estimation_method = {'Classical' : 1}
l2conestimate = pe.Node(interface = spm.EstimateContrast(), name="level2conestimate")
cont1 = ('Group','T', ['mean'],[1])
l2conestimate.inputs.contrasts = [cont1]
l2conestimate.inputs.group_contrast = True
"""As before, we setup a pipeline to connect these two nodes (l2source
-> onesamplettest).
"""
l2pipeline = pe.Workflow(name="level2")
l2pipeline.base_dir = os.path.abspath('spm_tutorial/l2output')
l2pipeline.connect([(l2source,onesamplettestdes,[('outfiles','in_files')]),
(onesamplettestdes,l2estimate,[('spm_mat_file','spm_mat_file')]),
(l2estimate,l2conestimate,[('spm_mat_file','spm_mat_file'),
('beta_images','beta_images'),
('residual_image','residual_image')]),
])
"""
Execute the pipeline
--------------------
The code discussed above sets up all the necessary data structures
with appropriate parameters and the connectivity between the
processes, but does not generate any output. To actually run the
analysis on the data the ``nipype.pipeline.engine.Pipeline.Run``
function needs to be called.
"""
if __name__ == '__main__':
l1pipeline.run()
# l2pipeline.run()
# l1pipeline.write_graph()
|