1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
=====================================
fMRI: Famous vs non-famous faces, SPM
=====================================
Introduction
============
The fmri_spm_face.py recreates the classical workflow described in the SPM8
manual (http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf) using auditory dataset
that can be downloaded from
http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html::
python fmri_spm.py
Import necessary modules from nipype."""
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.spm as spm # spm
import nipype.interfaces.matlab as mlab # how to run matlab
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
import nipype.algorithms.modelgen as model # model specification
import os # system functions
"""
Preliminaries
-------------
Set any package specific configuration. The output file format
for FSL routines is being set to uncompressed NIFTI and a specific
version of matlab is being used. The uncompressed format is required
because SPM does not handle compressed NIFTI.
"""
# Set the way matlab should be called
mlab.MatlabCommand.set_default_matlab_cmd("matlab -nodesktop -nosplash")
# If SPM is not in your MATLAB path you should add it here
# mlab.MatlabCommand.set_default_paths('/path/to/your/spm8')
"""
Setting up workflows
--------------------
In this tutorial we will be setting up a hierarchical workflow for spm
analysis. It one is slightly different then the one used in spm_tutorial2.
Setup preprocessing workflow
----------------------------
This is a generic preprocessing workflow that can be used by different analyses
"""
preproc = pe.Workflow(name='preproc')
"""Use :class:`nipype.interfaces.spm.Realign` for motion correction
and register all images to the mean image.
"""
realign = pe.Node(interface=spm.Realign(), name="realign")
slice_timing = pe.Node(interface=spm.SliceTiming(), name="slice_timing")
"""Use :class:`nipype.interfaces.spm.Coregister` to perform a rigid
body registration of the functional data to the structural data.
"""
coregister = pe.Node(interface=spm.Coregister(), name="coregister")
coregister.inputs.jobtype = 'estimate'
segment = pe.Node(interface=spm.Segment(), name="segment")
"""Uncomment the following line for faster execution
"""
#segment.inputs.gaussians_per_class = [1, 1, 1, 4]
"""Warp functional and structural data to SPM's T1 template using
:class:`nipype.interfaces.spm.Normalize`. The tutorial data set
includes the template image, T1.nii.
"""
normalize_func = pe.Node(interface=spm.Normalize(), name = "normalize_func")
normalize_func.inputs.jobtype = "write"
normalize_struc = pe.Node(interface=spm.Normalize(), name = "normalize_struc")
normalize_struc.inputs.jobtype = "write"
"""Smooth the functional data using
:class:`nipype.interfaces.spm.Smooth`.
"""
smooth = pe.Node(interface=spm.Smooth(), name = "smooth")
"""`write_voxel_sizes` is the input of the normalize interface that is recommended to be set to
the voxel sizes of the target volume. There is no need to set it manually since we van infer it from data
using the following function:
"""
def get_vox_dims(volume):
import nibabel as nb
if isinstance(volume, list):
volume = volume[0]
nii = nb.load(volume)
hdr = nii.get_header()
voxdims = hdr.get_zooms()
return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])]
"""Here we are connecting all the nodes together. Notice that we add the merge node only if you choose
to use 4D. Also `get_vox_dims` function is passed along the input volume of normalise to set the optimal
voxel sizes.
"""
preproc.connect([(realign,coregister,[('mean_image', 'target')]),
(coregister, segment,[('coregistered_source','data')]),
(segment, normalize_func, [('transformation_mat','parameter_file')]),
(segment, normalize_struc, [('transformation_mat','parameter_file'),
('modulated_input_image', 'apply_to_files'),
(('modulated_input_image', get_vox_dims), 'write_voxel_sizes')]),
(realign, slice_timing, [('realigned_files', 'in_files')]),
(slice_timing, normalize_func, [('timecorrected_files', 'apply_to_files'),
(('timecorrected_files', get_vox_dims), 'write_voxel_sizes')]),
(normalize_func, smooth, [('normalized_files', 'in_files')]),
])
"""
Set up analysis workflow
------------------------
"""
l1analysis = pe.Workflow(name='analysis')
"""Generate SPM-specific design information using
:class:`nipype.interfaces.spm.SpecifyModel`.
"""
modelspec = pe.Node(interface=model.SpecifySPMModel(), name= "modelspec")
"""Generate a first level SPM.mat file for analysis
:class:`nipype.interfaces.spm.Level1Design`.
"""
level1design = pe.Node(interface=spm.Level1Design(), name= "level1design")
"""Use :class:`nipype.interfaces.spm.EstimateModel` to determine the
parameters of the model.
"""
level1estimate = pe.Node(interface=spm.EstimateModel(), name="level1estimate")
level1estimate.inputs.estimation_method = {'Classical' : 1}
threshold = pe.Node(interface=spm.Threshold(), name="threshold")
"""Use :class:`nipype.interfaces.spm.EstimateContrast` to estimate the
first level contrasts specified in a few steps above.
"""
contrastestimate = pe.Node(interface = spm.EstimateContrast(), name="contrastestimate")
def pickfirst(l):
return l[0]
l1analysis.connect([(modelspec,level1design,[('session_info','session_info')]),
(level1design,level1estimate,[('spm_mat_file','spm_mat_file')]),
(level1estimate,contrastestimate,[('spm_mat_file','spm_mat_file'),
('beta_images','beta_images'),
('residual_image','residual_image')]),
(contrastestimate, threshold,[('spm_mat_file','spm_mat_file'),
(('spmT_images', pickfirst), 'stat_image')]),
])
"""
Preproc + Analysis pipeline
---------------------------
"""
l1pipeline = pe.Workflow(name='firstlevel')
l1pipeline.connect([(preproc, l1analysis, [('realign.realignment_parameters',
'modelspec.realignment_parameters')])])
"""Pluging in `functional_runs` is a bit more complicated, because model spec expects a list of `runs`.
Every run can be a 4D file or a list of 3D files. Therefore for 3D analysis we need a list of lists and
to make one we need a helper function.
"""
def makelist(item):
return [item]
l1pipeline.connect([(preproc, l1analysis, [(('smooth.smoothed_files',makelist),
'modelspec.functional_runs')])])
"""
Data specific components
------------------------
In this tutorial there is only one subject `M03953`.
Below we set some variables to inform the ``datasource`` about the
layout of our data. We specify the location of the data, the subject
sub-directories and a dictionary that maps each run to a mnemonic (or
field) for the run type (``struct`` or ``func``). These fields become
the output fields of the ``datasource`` node in the pipeline.
"""
# Specify the location of the data downloaded from http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html
data_dir = os.path.abspath('spm_face_data')
# Specify the subject directories
subject_list = ['M03953']
# Map field names to individual subject runs.
info = dict(func=[['RawEPI', 'subject_id', 5, ["_%04d"%i for i in range(6,357)]]],
struct=[['Structural', 'subject_id', 7, '']])
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']),
name="infosource")
"""Here we set up iteration over all the subjects. The following line
is a particular example of the flexibility of the system. The
``datasource`` attribute ``iterables`` tells the pipeline engine that
it should repeat the analysis on each of the items in the
``subject_list``. In the current example, the entire first level
preprocessing and estimation will be repeated for each subject
contained in subject_list.
"""
infosource.iterables = ('subject_id', subject_list)
"""
Now we create a :class:`nipype.interfaces.io.DataGrabber` object and
fill in the information from above about the layout of our data. The
:class:`nipype.pipeline.NodeWrapper` module wraps the interface object
and provides additional housekeeping and pipeline specific
functionality.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '%s/s%s_%04d%s.img'
datasource.inputs.template_args = info
"""
Experimental paradigm specific components
-----------------------------------------
Here we create a structure that provides information
about the experimental paradigm. This is used by the
:class:`nipype.interfaces.spm.SpecifyModel` to create the information
necessary to generate an SPM design matrix.
"""
from nipype.interfaces.base import Bunch
"""We're importing the onset times from a mat file (found on
http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html
"""
from scipy.io.matlab import loadmat
mat = loadmat(os.path.join(data_dir, "sots.mat"), struct_as_record=False)
sot = mat['sot'][0]
itemlag = mat['itemlag'][0]
subjectinfo = [Bunch(conditions=['N1', 'N2', 'F1', 'F2'],
onsets=[sot[0], sot[1], sot[2], sot[3]],
durations=[[0], [0], [0], [0]],
amplitudes=None,
tmod=None,
pmod=None,
regressor_names=None,
regressors=None)]
"""Setup the contrast structure that needs to be evaluated. This is a
list of lists. The inner list specifies the contrasts and has the
following format - [Name,Stat,[list of condition names],[weights on
those conditions]. The condition names must match the `names` listed
in the `subjectinfo` function described above.
"""
cond1 = ('positive effect of condition','T', ['N1*bf(1)','N2*bf(1)','F1*bf(1)','F2*bf(1)'],[1,1,1,1])
cond2 = ('positive effect of condition_dtemo','T', ['N1*bf(2)','N2*bf(2)','F1*bf(2)','F2*bf(2)'],[1,1,1,1])
cond3 = ('positive effect of condition_ddisp','T', ['N1*bf(3)','N2*bf(3)','F1*bf(3)','F2*bf(3)'],[1,1,1,1])
# non-famous > famous
fam1 = ('positive effect of Fame','T', ['N1*bf(1)','N2*bf(1)','F1*bf(1)','F2*bf(1)'],[1,1,-1,-1])
fam2 = ('positive effect of Fame_dtemp','T', ['N1*bf(2)','N2*bf(2)','F1*bf(2)','F2*bf(2)'],[1,1,-1,-1])
fam3 = ('positive effect of Fame_ddisp','T', ['N1*bf(3)','N2*bf(3)','F1*bf(3)','F2*bf(3)'],[1,1,-1,-1])
# rep1 > rep2
rep1 = ('positive effect of Rep','T', ['N1*bf(1)','N2*bf(1)','F1*bf(1)','F2*bf(1)'],[1,-1,1,-1])
rep2 = ('positive effect of Rep_dtemp','T', ['N1*bf(2)','N2*bf(2)','F1*bf(2)','F2*bf(2)'],[1,-1,1,-1])
rep3 = ('positive effect of Rep_ddisp','T', ['N1*bf(3)','N2*bf(3)','F1*bf(3)','F2*bf(3)'],[1,-1,1,-1])
int1 = ('positive interaction of Fame x Rep','T', ['N1*bf(1)','N2*bf(1)','F1*bf(1)','F2*bf(1)'],[-1,-1,-1,1])
int2 = ('positive interaction of Fame x Rep_dtemp','T', ['N1*bf(2)','N2*bf(2)','F1*bf(2)','F2*bf(2)'],[1,-1,-1,1])
int3 = ('positive interaction of Fame x Rep_ddisp','T', ['N1*bf(3)','N2*bf(3)','F1*bf(3)','F2*bf(3)'],[1,-1,-1,1])
contf1 = ['average effect condition','F', [cond1, cond2, cond3]]
contf2 = ['main effect Fam', 'F', [fam1, fam2, fam3]]
contf3 = ['main effect Rep', 'F', [rep1, rep2, rep3]]
contf4 = ['interaction: Fam x Rep', 'F', [int1, int2, int3]]
contrasts = [cond1, cond2, cond3, fam1, fam2, fam3, rep1, rep2, rep3, int1, int2, int3, contf1, contf2,contf3,contf4]
"""Setting up nodes inputs
"""
num_slices = 24
TR = 2.
slice_timingref = l1pipeline.inputs.preproc.slice_timing
slice_timingref.num_slices = num_slices
slice_timingref.time_repetition = TR
slice_timingref.time_acquisition = TR - TR/float(num_slices)
slice_timingref.slice_order = range(num_slices,0,-1)
slice_timingref.ref_slice = num_slices/2
l1pipeline.inputs.preproc.smooth.fwhm = [8, 8, 8]
# set up node specific inputs
modelspecref = l1pipeline.inputs.analysis.modelspec
modelspecref.input_units = 'scans'
modelspecref.output_units = 'scans'
modelspecref.time_repetition = TR
modelspecref.high_pass_filter_cutoff = 120
l1designref = l1pipeline.inputs.analysis.level1design
l1designref.timing_units = modelspecref.output_units
l1designref.interscan_interval = modelspecref.time_repetition
l1designref.microtime_resolution = slice_timingref.num_slices
l1designref.microtime_onset = slice_timingref.ref_slice
l1designref.bases = {'hrf':{'derivs': [1,1]}}
"""
The following lines automatically inform SPM to create a default set of
contrats for a factorial design.
"""
#l1designref.factor_info = [dict(name = 'Fame', levels = 2),
# dict(name = 'Rep', levels = 2)]
l1pipeline.inputs.analysis.modelspec.subject_info = subjectinfo
l1pipeline.inputs.analysis.contrastestimate.contrasts = contrasts
l1pipeline.inputs.analysis.threshold.contrast_index = 1
"""
Use derivative estimates in the non-parametric model
"""
l1pipeline.inputs.analysis.contrastestimate.use_derivs = True
"""
Setting up parametricvariation of the model
"""
subjectinfo_param = [Bunch(conditions=['N1', 'N2', 'F1', 'F2'],
onsets=[sot[0], sot[1], sot[2], sot[3]],
durations=[[0], [0], [0], [0]],
amplitudes=None,
tmod=None,
pmod=[None,
Bunch(name=['Lag'],
param=itemlag[1].tolist(),
poly=[2]),
None,
Bunch(name=['Lag'],
param=itemlag[3].tolist(),
poly=[2])],
regressor_names=None,
regressors=None)]
cont1 = ('Famous_lag1','T', ['F2xLag^1'],[1])
cont2 = ('Famous_lag2','T', ['F2xLag^2'],[1])
fcont1 = ('Famous Lag', 'F', [cont1, cont2])
paramcontrasts = [cont1, cont2, fcont1]
paramanalysis = l1analysis.clone(name='paramanalysis')
paramanalysis.inputs.level1design.bases = {'hrf':{'derivs': [0,0]}}
paramanalysis.inputs.modelspec.subject_info = subjectinfo_param
paramanalysis.inputs.contrastestimate.contrasts = paramcontrasts
paramanalysis.inputs.contrastestimate.use_derivs = False
l1pipeline.connect([(preproc, paramanalysis, [('realign.realignment_parameters',
'modelspec.realignment_parameters'),
(('smooth.smoothed_files',makelist),
'modelspec.functional_runs')])])
"""
Setup the pipeline
------------------
The nodes created above do not describe the flow of data. They merely
describe the parameters used for each function. In this section we
setup the connections between the nodes such that appropriate outputs
from nodes are piped into appropriate inputs of other nodes.
Use the :class:`nipype.pipeline.engine.Pipeline` to create a
graph-based execution pipeline for first level analysis. The config
options tells the pipeline engine to use `workdir` as the disk
location to use when running the processes and keeping their
outputs. The `use_parameterized_dirs` tells the engine to create
sub-directories under `workdir` corresponding to the iterables in the
pipeline. Thus for this pipeline there will be subject specific
sub-directories.
The ``nipype.pipeline.engine.Pipeline.connect`` function creates the
links between the processes, i.e., how data should flow in and out of
the processing nodes.
"""
level1 = pe.Workflow(name="level1")
level1.base_dir = os.path.abspath('spm_face_tutorial/workingdir')
level1.connect([(infosource, datasource, [('subject_id', 'subject_id')]),
(datasource,l1pipeline,[('struct', 'preproc.coregister.source'),
('func','preproc.realign.in_files')])
])
"""
Setup storage results
---------------------
Use :class:`nipype.interfaces.io.DataSink` to store selected outputs
from the pipeline in a specific location. This allows the user to
selectively choose important output bits from the analysis and keep
them.
The first step is to create a datasink node and then to connect
outputs from the modules above to storage locations. These take the
following form directory_name[.[@]subdir] where parts between [] are
optional. For example 'realign.@mean' below creates a directory called
realign in 'l1output/subject_id/' and stores the mean image output
from the Realign process in the realign directory. If the @ is left
out, then a sub-directory with the name 'mean' would be created and
the mean image would be copied to that directory.
"""
datasink = pe.Node(interface=nio.DataSink(), name="datasink")
datasink.inputs.base_directory = os.path.abspath('spm_auditory_tutorial/l1output')
def getstripdir(subject_id):
import os
return os.path.join(os.path.abspath('spm_auditory_tutorial/workingdir'),'_subject_id_%s' % subject_id)
# store relevant outputs from various stages of the 1st level analysis
level1.connect([(infosource, datasink,[('subject_id','container'),
(('subject_id', getstripdir),'strip_dir')]),
(l1pipeline, datasink,[('analysis.contrastestimate.con_images','contrasts.@con'),
('analysis.contrastestimate.spmT_images','contrasts.@T'),
('paramanalysis.contrastestimate.con_images','paramcontrasts.@con'),
('paramanalysis.contrastestimate.spmT_images','paramcontrasts.@T')]),
])
"""
Execute the pipeline
--------------------
The code discussed above sets up all the necessary data structures
with appropriate parameters and the connectivity between the
processes, but does not generate any output. To actually run the
analysis on the data the ``nipype.pipeline.engine.Pipeline.Run``
function needs to be called.
"""
if __name__ == '__main__':
level1.run()
level1.write_graph()
|