1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
===========================
Paper: Smoothing comparison
===========================
"""
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.spm as spm # spm
import nipype.interfaces.freesurfer as fs # freesurfer
import nipype.interfaces.nipy as nipy
import nipype.interfaces.utility as util
import nipype.pipeline.engine as pe # pypeline engine
import nipype.algorithms.modelgen as model # model specification
import nipype.workflows.fmri.fsl as fsl_wf
from nipype.interfaces.base import Bunch
import os # system functions
preprocessing = pe.Workflow(name="preprocessing")
iter_fwhm = pe.Node(interface=util.IdentityInterface(fields=["fwhm"]),
name="iter_fwhm")
iter_fwhm.iterables = [('fwhm', [4, 8])]
iter_smoothing_method = pe.Node(interface=util.IdentityInterface(fields=["smoothing_method"]),
name="iter_smoothing_method")
iter_smoothing_method.iterables = [('smoothing_method',['isotropic_voxel',
'anisotropic_voxel',
'isotropic_surface'])]
realign = pe.Node(interface=spm.Realign(), name="realign")
realign.inputs.register_to_mean = True
isotropic_voxel_smooth = pe.Node(interface=spm.Smooth(),
name="isotropic_voxel_smooth")
preprocessing.connect(realign, "realigned_files", isotropic_voxel_smooth,
"in_files")
preprocessing.connect(iter_fwhm, "fwhm", isotropic_voxel_smooth, "fwhm")
compute_mask = pe.Node(interface=nipy.ComputeMask(), name="compute_mask")
preprocessing.connect(realign, "mean_image", compute_mask, "mean_volume")
anisotropic_voxel_smooth = fsl_wf.create_susan_smooth(name="anisotropic_voxel_smooth",
separate_masks=False)
anisotropic_voxel_smooth.inputs.smooth.output_type = 'NIFTI'
preprocessing.connect(realign, "realigned_files", anisotropic_voxel_smooth,
"inputnode.in_files")
preprocessing.connect(iter_fwhm, "fwhm", anisotropic_voxel_smooth,
"inputnode.fwhm")
preprocessing.connect(compute_mask, "brain_mask", anisotropic_voxel_smooth,
'inputnode.mask_file')
recon_all = pe.Node(interface=fs.ReconAll(), name = "recon_all")
surfregister = pe.Node(interface=fs.BBRegister(),name='surfregister')
surfregister.inputs.init = 'fsl'
surfregister.inputs.contrast_type = 't2'
preprocessing.connect(realign, 'mean_image', surfregister, 'source_file')
preprocessing.connect(recon_all, 'subject_id', surfregister, 'subject_id')
preprocessing.connect(recon_all, 'subjects_dir', surfregister, 'subjects_dir')
isotropic_surface_smooth = pe.MapNode(interface=fs.Smooth(proj_frac_avg=(0,1,0.1)),
iterfield=['in_file'],
name="isotropic_surface_smooth")
preprocessing.connect(surfregister, 'out_reg_file', isotropic_surface_smooth,
'reg_file')
preprocessing.connect(realign, "realigned_files", isotropic_surface_smooth,
"in_file")
preprocessing.connect(iter_fwhm, "fwhm", isotropic_surface_smooth,
"surface_fwhm")
preprocessing.connect(iter_fwhm, "fwhm", isotropic_surface_smooth, "vol_fwhm")
preprocessing.connect(recon_all, 'subjects_dir', isotropic_surface_smooth,
'subjects_dir')
merge_smoothed_files = pe.Node(interface=util.Merge(3),
name='merge_smoothed_files')
preprocessing.connect(isotropic_voxel_smooth, 'smoothed_files',
merge_smoothed_files, 'in1')
preprocessing.connect(anisotropic_voxel_smooth, 'outputnode.smoothed_files',
merge_smoothed_files, 'in2')
preprocessing.connect(isotropic_surface_smooth, 'smoothed_file',
merge_smoothed_files, 'in3')
select_smoothed_files = pe.Node(interface=util.Select(),
name="select_smoothed_files")
preprocessing.connect(merge_smoothed_files, 'out', select_smoothed_files,
'inlist')
def chooseindex(roi):
return {'isotropic_voxel':range(0,4), 'anisotropic_voxel':range(4,8),
'isotropic_surface':range(8,12)}[roi]
preprocessing.connect(iter_smoothing_method, ("smoothing_method", chooseindex),
select_smoothed_files, 'index')
rename = pe.MapNode(util.Rename(format_string="%(orig)s"), name="rename",
iterfield=['in_file'])
rename.inputs.parse_string = "(?P<orig>.*)"
preprocessing.connect(select_smoothed_files, 'out', rename, 'in_file')
specify_model = pe.Node(interface=model.SpecifyModel(), name="specify_model")
specify_model.inputs.input_units = 'secs'
specify_model.inputs.time_repetition = 3.
specify_model.inputs.high_pass_filter_cutoff = 120
specify_model.inputs.subject_info = [Bunch(conditions=['Task-Odd','Task-Even'],
onsets=[range(15,240,60),
range(45,240,60)],
durations=[[15], [15]])]*4
level1design = pe.Node(interface=spm.Level1Design(), name= "level1design")
level1design.inputs.bases = {'hrf':{'derivs': [0,0]}}
level1design.inputs.timing_units = 'secs'
level1design.inputs.interscan_interval = specify_model.inputs.time_repetition
level1estimate = pe.Node(interface=spm.EstimateModel(), name="level1estimate")
level1estimate.inputs.estimation_method = {'Classical' : 1}
contrastestimate = pe.Node(interface = spm.EstimateContrast(),
name="contrastestimate")
contrastestimate.inputs.contrasts = [('Task>Baseline','T',
['Task-Odd','Task-Even'],[0.5,0.5])]
modelling = pe.Workflow(name="modelling")
modelling.connect(specify_model, 'session_info', level1design, 'session_info')
modelling.connect(level1design, 'spm_mat_file', level1estimate, 'spm_mat_file')
modelling.connect(level1estimate,'spm_mat_file', contrastestimate,
'spm_mat_file')
modelling.connect(level1estimate,'beta_images', contrastestimate,'beta_images')
modelling.connect(level1estimate,'residual_image', contrastestimate,
'residual_image')
main_workflow = pe.Workflow(name="main_workflow")
main_workflow.base_dir = "smoothing_comparison_workflow"
main_workflow.connect(preprocessing, "realign.realignment_parameters",
modelling, "specify_model.realignment_parameters")
main_workflow.connect(preprocessing, "select_smoothed_files.out",
modelling, "specify_model.functional_runs")
main_workflow.connect(preprocessing, "compute_mask.brain_mask",
modelling, "level1design.mask_image")
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = os.path.abspath('data')
datasource.inputs.template = '%s/%s.nii'
datasource.inputs.template_args = info = dict(func=[['subject_id',
['f3','f5','f7','f10']]],
struct=[['subject_id','struct']])
datasource.inputs.subject_id = 's1'
main_workflow.connect(datasource, 'func', preprocessing, 'realign.in_files')
main_workflow.connect(datasource, 'struct', preprocessing,
'recon_all.T1_files')
datasink = pe.Node(interface=nio.DataSink(), name="datasink")
datasink.inputs.base_directory = os.path.abspath('smoothing_comparison_workflow/output')
datasink.inputs.regexp_substitutions = [("_rename[0-9]", "")]
main_workflow.connect(modelling, 'contrastestimate.spmT_images', datasink,
'contrasts')
main_workflow.connect(preprocessing, 'rename.out_file', datasink,
'smoothed_epi')
main_workflow.run()
main_workflow.write_graph()
|