1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
===========================
rsfMRI: FSL - CSF regressed
===========================
A pipeline example that uses intergrates several interfaces to
perform a first and second level analysis on a two-subject data
set.
1. Tell python where to find the appropriate functions.
"""
import numpy as np
import nipype.interfaces.io as nio # Data i/o
import nipype.interfaces.fsl as fsl # fsl
import nipype.interfaces.utility as util # utility
import nipype.pipeline.engine as pe # pypeline engine
import nipype.algorithms.modelgen as model # model generation
import os # system functions
#####################################################################
# Preliminaries
"""
2. Setup any package specific configuration. The output file format
for FSL routines is being set to uncompressed NIFTI and a specific
version of matlab is being used. The uncompressed format is
required because SPM does not handle compressed NIFTI.
"""
# Tell fsl to generate all output in compressed nifti format
print fsl.Info.version()
fsl.FSLCommand.set_default_output_type('NIFTI_GZ')
extract_ref = pe.Node(interface=fsl.ExtractROI(t_min=42,
t_size=1),
name = 'extractref')
# run FSL's bet
# bet my_structural my_betted_structural
"""
in the provided data set, the nose is behind the head and causes problems for
segmentation routines
"""
nosestrip = pe.Node(interface=fsl.BET(frac=0.3),
name = 'nosestrip')
skullstrip = pe.Node(interface=fsl.BET(mask = True),
name = 'stripstruct')
refskullstrip = pe.Node(interface=fsl.BET(mask = True),
name = 'stripref')
coregister = pe.Node(interface=fsl.FLIRT(dof=6),
name = 'coregister')
# Preprocess functionals
motion_correct = pe.Node(interface=fsl.MCFLIRT(save_plots = True),
name='realign')
#iterfield = ['in_file'])
"""
skull strip functional data
"""
func_skullstrip = pe.Node(interface=fsl.BET(functional = True),
name='stripfunc')
#iterfield = ['in_file'])
"""
Run FAST on T1 anatomical image to obtain CSF mask.
Create mask for three tissue types.
"""
getCSFmasks = pe.Node(interface=fsl.FAST(no_pve=True,segments=True),
name = 'segment')
"""
Apply registration matrix to CSF segmentation mask.
"""
applyReg2CSFmask = pe.Node(interface=fsl.ApplyXfm(apply_xfm=True),
name = 'applyreg2csfmask')
"""
Threshold CSF segmentation mask from .90 to 1
"""
threshCSFseg = pe.Node(interface = fsl.ImageMaths(op_string = ' -thr .90 -uthr 1 -bin '),
name = 'threshcsfsegmask')
"""
Extract CSF timeseries
"""
avgCSF = pe.Node(interface = fsl.ImageMeants(), name='extractcsfts')
def pickfirst(files):
return files[0]
"""
Create the workflow
"""
csffilter = pe.Workflow(name='csffilter')
csffilter.connect([(extract_ref, motion_correct,[('roi_file', 'ref_file')]),
(extract_ref, refskullstrip,[('roi_file', 'in_file')]),
(nosestrip, skullstrip, [('out_file','in_file')]),
(skullstrip, getCSFmasks,[('out_file','in_files')]),
(skullstrip, coregister,[('mask_file','in_file')]),
(refskullstrip, coregister,[('out_file','reference')]),
(motion_correct, func_skullstrip, [('out_file', 'in_file')]),
(getCSFmasks, applyReg2CSFmask,[(('tissue_class_files',pickfirst),'in_file')]),
(refskullstrip, applyReg2CSFmask,[('out_file','reference')]),
(coregister, applyReg2CSFmask,[('out_matrix_file','in_matrix_file')]),
(applyReg2CSFmask,threshCSFseg,[('out_file','in_file')]),
(func_skullstrip,avgCSF,[('out_file','in_file')]),
(threshCSFseg,avgCSF,[('out_file','mask')]),
])
modelfit = pe.Workflow(name='modelfit')
"""
c. Use :class:`nipype.interfaces.spm.SpecifyModel` to generate
SPM-specific design information.
"""
modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec")
"""
d. Use :class:`nipype.interfaces.fsl.Level1Design` to generate a
run specific fsf file for analysis
"""
level1design = pe.Node(interface=fsl.Level1Design(), name="fsfdesign")
"""
e. Use :class:`nipype.interfaces.fsl.FEATModel` to generate a
run specific mat file for use by FILMGLS
"""
modelgen = pe.Node(interface=fsl.FEATModel(), name='modelgen')
"""
f. Use :class:`nipype.interfaces.fsl.FILMGLS` to estimate a model
specified by a mat file and a functional run
"""
modelestimate = pe.Node(interface=fsl.FILMGLS(), name='modelestimate')
#iterfield = ['design_file','in_file'])
modelfit.connect([(modelspec,level1design,[('session_info','session_info')]),
(level1design,modelgen,[('fsf_files','fsf_file'),
('ev_files', 'ev_files')]),
(modelgen,modelestimate,[('design_file','design_file')]),
])
"""
The nipype tutorial contains data for two subjects. Subject data
is in two subdirectories, ``s1`` and ``s2``. Each subject directory
contains four functional volumes: f3.nii, f5.nii, f7.nii, f10.nii. And
one anatomical volume named struct.nii.
Below we set some variables to inform the ``datasource`` about the
layout of our data. We specify the location of the data, the subject
sub-directories and a dictionary that maps each run to a mnemonic (or
field) for the run type (``struct`` or ``func``). These fields become
the output fields of the ``datasource`` node in the pipeline.
In the example below, run 'f3' is of type 'func' and gets mapped to a
nifti filename through a template '%s.nii'. So 'f3' would become
'f3.nii'.
"""
# Specify the location of the data.
data_dir = os.path.abspath('data')
# Specify the subject directories
subject_list = ['s1']
# Map field names to individual subject runs.
info = dict(func=[['subject_id', ['f3',]]], #'f5','f7','f10']]],
struct=[['subject_id','struct']])
infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']),
name="infosource")
"""
Here we set up iteration over all the subjects. The following line
is a particular example of the flexibility of the system. The
``datasource`` attribute ``iterables`` tells the pipeline engine that
it should repeat the analysis on each of the items in the
``subject_list``. In the current example, the entire first level
preprocessing and estimation will be repeated for each subject
contained in subject_list.
"""
infosource.iterables = ('subject_id', subject_list)
"""
Preprocessing pipeline nodes
----------------------------
Now we create a :class:`nipype.interfaces.io.DataSource` object and
fill in the information from above about the layout of our data. The
:class:`nipype.pipeline.NodeWrapper` module wraps the interface object
and provides additional housekeeping and pipeline specific
functionality.
"""
datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name = 'datasource')
datasource.inputs.base_directory = data_dir
datasource.inputs.template = '%s/%s.nii'
datasource.inputs.template_args = info
"""
a. Setup a function that returns subject-specific information about
the experimental paradigm. This is used by the
:class:`nipype.modelgen.SpecifyModel` to create the
information necessary to generate an SPM design matrix. In this
tutorial, the same paradigm was used for every participant. Other
examples of this function are available in the `doc/examples`
folder. Note: Python knowledge required here.
"""
def subjectinfo(meantsfile):
import numpy as np
from nipype.interfaces.base import Bunch
ts = np.loadtxt(meantsfile)
output = [Bunch(regressor_names=['MeanIntensity'],
regressors=[ts.tolist()])]
return output
hpcutoff = np.inf
TR = 3.
modelfit.inputs.modelspec.input_units = 'secs'
modelfit.inputs.modelspec.time_repetition = TR
modelfit.inputs.modelspec.high_pass_filter_cutoff = hpcutoff
modelfit.inputs.fsfdesign.interscan_interval = TR
modelfit.inputs.fsfdesign.bases = {'none': None}
modelfit.inputs.fsfdesign.model_serial_correlations = False
modelfit.inputs.modelestimate.autocorr_noestimate = True
"""
Band pass filter the data to remove frequencies below .1 Hz
"""
bandPassFilterData = pe.Node(interface=fsl.ImageMaths(op_string = ' -bptf 128 12.5 '),
name='bandpassfiltermcdata_fslmaths')
"""
Set up complete workflow
========================
"""
l1pipeline = pe.Workflow(name= "resting")
l1pipeline.base_dir = os.path.abspath('./fslresting/workingdir')
l1pipeline.connect([(infosource, datasource, [('subject_id', 'subject_id')]),
(datasource, csffilter, [('struct','nosestrip.in_file'),
('func', 'realign.in_file'),
#(('func', pickfirst), 'extractref.in_file'),
('func', 'extractref.in_file'),
]),
(csffilter, modelfit, [('stripfunc.out_file', 'modelspec.functional_runs'),
('realign.par_file', 'modelspec.realignment_parameters'),
(('extractcsfts.out_file', subjectinfo),'modelspec.subject_info'),
('stripfunc.out_file', 'modelestimate.in_file')
]),
(modelfit, bandPassFilterData, [('modelestimate.residual4d', 'in_file')]),
])
if __name__ == '__main__':
l1pipeline.run()
l1pipeline.write_graph()
|