1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
|
# -*- coding: utf-8 -*-
# -*- coding: utf8 -*-
"""Autogenerated file - DO NOT EDIT
If you spot a bug, please report it on the mailing list and/or change the generator."""
import os
from ...base import (
CommandLine,
CommandLineInputSpec,
SEMLikeCommandLine,
TraitedSpec,
File,
Directory,
traits,
isdefined,
InputMultiPath,
OutputMultiPath,
)
class gtractTransformToDisplacementFieldInputSpec(CommandLineInputSpec):
inputTransform = File(
desc="Input Transform File Name", exists=True, argstr="--inputTransform %s"
)
inputReferenceVolume = File(
desc="Required: input image file name to exemplify the anatomical space over which to vcl_express the transform as a displacement field.",
exists=True,
argstr="--inputReferenceVolume %s",
)
outputDeformationFieldVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Output deformation field",
argstr="--outputDeformationFieldVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractTransformToDisplacementFieldOutputSpec(TraitedSpec):
outputDeformationFieldVolume = File(desc="Output deformation field", exists=True)
class gtractTransformToDisplacementField(SEMLikeCommandLine):
"""title: Create Displacement Field
category: Diffusion.GTRACT
description: This program will compute forward deformation from the given Transform. The size of the DF is equal to MNI space
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta, Madhura Ingalhalikar, and Greg Harris
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractTransformToDisplacementFieldInputSpec
output_spec = gtractTransformToDisplacementFieldOutputSpec
_cmd = " gtractTransformToDisplacementField "
_outputs_filenames = {
"outputDeformationFieldVolume": "outputDeformationFieldVolume.nii"
}
_redirect_x = False
class gtractInvertBSplineTransformInputSpec(CommandLineInputSpec):
inputReferenceVolume = File(
desc="Required: input image file name to exemplify the anatomical space to interpolate over.",
exists=True,
argstr="--inputReferenceVolume %s",
)
inputTransform = File(
desc="Required: input B-Spline transform file name",
exists=True,
argstr="--inputTransform %s",
)
outputTransform = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: output transform file name",
argstr="--outputTransform %s",
)
landmarkDensity = InputMultiPath(
traits.Int,
desc="Number of landmark subdivisions in all 3 directions",
sep=",",
argstr="--landmarkDensity %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractInvertBSplineTransformOutputSpec(TraitedSpec):
outputTransform = File(desc="Required: output transform file name", exists=True)
class gtractInvertBSplineTransform(SEMLikeCommandLine):
"""title: B-Spline Transform Inversion
category: Diffusion.GTRACT
description: This program will invert a B-Spline transform using a thin-plate spline approximation.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractInvertBSplineTransformInputSpec
output_spec = gtractInvertBSplineTransformOutputSpec
_cmd = " gtractInvertBSplineTransform "
_outputs_filenames = {"outputTransform": "outputTransform.h5"}
_redirect_x = False
class gtractConcatDwiInputSpec(CommandLineInputSpec):
inputVolume = InputMultiPath(
File(exists=True),
desc="Required: input file containing the first diffusion weighted image",
argstr="--inputVolume %s...",
)
ignoreOrigins = traits.Bool(
desc="If image origins are different force all images to origin of first image",
argstr="--ignoreOrigins ",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the combined diffusion weighted images.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractConcatDwiOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the combined diffusion weighted images.",
exists=True,
)
class gtractConcatDwi(SEMLikeCommandLine):
"""title: Concat DWI Images
category: Diffusion.GTRACT
description: This program will concatenate two DTI runs together.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractConcatDwiInputSpec
output_spec = gtractConcatDwiOutputSpec
_cmd = " gtractConcatDwi "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractAverageBvaluesInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input image file name containing multiple baseline gradients to average",
exists=True,
argstr="--inputVolume %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing directly averaged baseline images",
argstr="--outputVolume %s",
)
directionsTolerance = traits.Float(
desc="Tolerance for matching identical gradient direction pairs",
argstr="--directionsTolerance %f",
)
averageB0only = traits.Bool(
desc="Average only baseline gradients. All other gradient directions are not averaged, but retained in the outputVolume",
argstr="--averageB0only ",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractAverageBvaluesOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing directly averaged baseline images",
exists=True,
)
class gtractAverageBvalues(SEMLikeCommandLine):
"""title: Average B-Values
category: Diffusion.GTRACT
description: This program will directly average together the baseline gradients (b value equals 0) within a DWI scan. This is usually used after gtractCoregBvalues.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractAverageBvaluesInputSpec
output_spec = gtractAverageBvaluesOutputSpec
_cmd = " gtractAverageBvalues "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractCoregBvaluesInputSpec(CommandLineInputSpec):
movingVolume = File(
desc="Required: input moving image file name. In order to register gradients within a scan to its first gradient, set the movingVolume and fixedVolume as the same image.",
exists=True,
argstr="--movingVolume %s",
)
fixedVolume = File(
desc="Required: input fixed image file name. It is recommended that this image should either contain or be a b0 image.",
exists=True,
argstr="--fixedVolume %s",
)
fixedVolumeIndex = traits.Int(
desc="Index in the fixed image for registration. It is recommended that this image should be a b0 image.",
argstr="--fixedVolumeIndex %d",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing moving images individually resampled and fit to the specified fixed image index.",
argstr="--outputVolume %s",
)
outputTransform = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Registration 3D transforms concatenated in a single output file. There are no tools that can use this, but can be used for debugging purposes.",
argstr="--outputTransform %s",
)
eddyCurrentCorrection = traits.Bool(
desc="Flag to perform eddy current corection in addition to motion correction (recommended)",
argstr="--eddyCurrentCorrection ",
)
numberOfIterations = traits.Int(
desc="Number of iterations in each 3D fit", argstr="--numberOfIterations %d"
)
numberOfSpatialSamples = traits.Int(
desc="The number of voxels sampled for mutual information computation. Increase this for a slower, more careful fit. NOTE that it is suggested to use samplingPercentage instead of this option. However, if set, it overwrites the samplingPercentage option. ",
argstr="--numberOfSpatialSamples %d",
)
samplingPercentage = traits.Float(
desc="This is a number in (0.0,1.0] interval that shows the percentage of the input fixed image voxels that are sampled for mutual information computation. Increase this for a slower, more careful fit. You can also limit the sampling focus with ROI masks and ROIAUTO mask generation. The default is to use approximately 5% of voxels (for backwards compatibility 5% ~= 500000/(256*256*256)). Typical values range from 1% for low detail images to 20% for high detail images.",
argstr="--samplingPercentage %f",
)
relaxationFactor = traits.Float(
desc="Fraction of gradient from Jacobian to attempt to move in each 3D fit step (adjust when eddyCurrentCorrection is enabled; suggested value = 0.25)",
argstr="--relaxationFactor %f",
)
maximumStepSize = traits.Float(
desc="Maximum permitted step size to move in each 3D fit step (adjust when eddyCurrentCorrection is enabled; suggested value = 0.1)",
argstr="--maximumStepSize %f",
)
minimumStepSize = traits.Float(
desc="Minimum required step size to move in each 3D fit step without converging -- decrease this to make the fit more exacting",
argstr="--minimumStepSize %f",
)
spatialScale = traits.Float(
desc="How much to scale up changes in position compared to unit rotational changes in radians -- decrease this to put more rotation in the fit",
argstr="--spatialScale %f",
)
registerB0Only = traits.Bool(
desc="Register the B0 images only", argstr="--registerB0Only "
)
debugLevel = traits.Int(
desc="Display debug messages, and produce debug intermediate results. 0=OFF, 1=Minimal, 10=Maximum debugging.",
argstr="--debugLevel %d",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractCoregBvaluesOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing moving images individually resampled and fit to the specified fixed image index.",
exists=True,
)
outputTransform = File(
desc="Registration 3D transforms concatenated in a single output file. There are no tools that can use this, but can be used for debugging purposes.",
exists=True,
)
class gtractCoregBvalues(SEMLikeCommandLine):
"""title: Coregister B-Values
category: Diffusion.GTRACT
description: This step should be performed after converting DWI scans from DICOM to NRRD format. This program will register all gradients in a NRRD diffusion weighted 4D vector image (moving image) to a specified index in a fixed image. It also supports co-registration with a T2 weighted image or field map in the same plane as the DWI data. The fixed image for the registration should be a b0 image. A mutual information metric cost function is used for the registration because of the differences in signal intensity as a result of the diffusion gradients. The full affine allows the registration procedure to correct for eddy current distortions that may exist in the data. If the eddyCurrentCorrection is enabled, relaxationFactor (0.25) and maximumStepSize (0.1) should be adjusted.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractCoregBvaluesInputSpec
output_spec = gtractCoregBvaluesOutputSpec
_cmd = " gtractCoregBvalues "
_outputs_filenames = {
"outputVolume": "outputVolume.nrrd",
"outputTransform": "outputTransform.h5",
}
_redirect_x = False
class gtractResampleAnisotropyInputSpec(CommandLineInputSpec):
inputAnisotropyVolume = File(
desc="Required: input file containing the anisotropy image",
exists=True,
argstr="--inputAnisotropyVolume %s",
)
inputAnatomicalVolume = File(
desc="Required: input file containing the anatomical image whose characteristics will be cloned.",
exists=True,
argstr="--inputAnatomicalVolume %s",
)
inputTransform = File(
desc="Required: input Rigid OR Bspline transform file name",
exists=True,
argstr="--inputTransform %s",
)
transformType = traits.Enum(
"Rigid",
"B-Spline",
desc="Transform type: Rigid, B-Spline",
argstr="--transformType %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the resampled transformed anisotropy image.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractResampleAnisotropyOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the resampled transformed anisotropy image.",
exists=True,
)
class gtractResampleAnisotropy(SEMLikeCommandLine):
"""title: Resample Anisotropy
category: Diffusion.GTRACT
description: This program will resample a floating point image using either the Rigid or B-Spline transform. You may want to save the aligned B0 image after each of the anisotropy map co-registration steps with the anatomical image to check the registration quality with another tool.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractResampleAnisotropyInputSpec
output_spec = gtractResampleAnisotropyOutputSpec
_cmd = " gtractResampleAnisotropy "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractResampleCodeImageInputSpec(CommandLineInputSpec):
inputCodeVolume = File(
desc="Required: input file containing the code image",
exists=True,
argstr="--inputCodeVolume %s",
)
inputReferenceVolume = File(
desc="Required: input file containing the standard image to clone the characteristics of.",
exists=True,
argstr="--inputReferenceVolume %s",
)
inputTransform = File(
desc="Required: input Rigid or Inverse-B-Spline transform file name",
exists=True,
argstr="--inputTransform %s",
)
transformType = traits.Enum(
"Rigid",
"Affine",
"B-Spline",
"Inverse-B-Spline",
"None",
desc="Transform type: Rigid or Inverse-B-Spline",
argstr="--transformType %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the resampled code image in acquisition space.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractResampleCodeImageOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the resampled code image in acquisition space.",
exists=True,
)
class gtractResampleCodeImage(SEMLikeCommandLine):
"""title: Resample Code Image
category: Diffusion.GTRACT
description: This program will resample a short integer code image using either the Rigid or Inverse-B-Spline transform. The reference image is the DTI tensor anisotropy image space, and the input code image is in anatomical space.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractResampleCodeImageInputSpec
output_spec = gtractResampleCodeImageOutputSpec
_cmd = " gtractResampleCodeImage "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractCopyImageOrientationInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input file containing the signed short image to reorient without resampling.",
exists=True,
argstr="--inputVolume %s",
)
inputReferenceVolume = File(
desc="Required: input file containing orietation that will be cloned.",
exists=True,
argstr="--inputReferenceVolume %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD or Nifti file containing the reoriented image in reference image space.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractCopyImageOrientationOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD or Nifti file containing the reoriented image in reference image space.",
exists=True,
)
class gtractCopyImageOrientation(SEMLikeCommandLine):
"""title: Copy Image Orientation
category: Diffusion.GTRACT
description: This program will copy the orientation from the reference image into the moving image. Currently, the registration process requires that the diffusion weighted images and the anatomical images have the same image orientation (i.e. Axial, Coronal, Sagittal). It is suggested that you copy the image orientation from the diffusion weighted images and apply this to the anatomical image. This image can be subsequently removed after the registration step is complete. We anticipate that this limitation will be removed in future versions of the registration programs.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractCopyImageOrientationInputSpec
output_spec = gtractCopyImageOrientationOutputSpec
_cmd = " gtractCopyImageOrientation "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractCreateGuideFiberInputSpec(CommandLineInputSpec):
inputFiber = File(
desc="Required: input fiber tract file name",
exists=True,
argstr="--inputFiber %s",
)
numberOfPoints = traits.Int(
desc="Number of points in output guide fiber", argstr="--numberOfPoints %d"
)
outputFiber = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: output guide fiber file name",
argstr="--outputFiber %s",
)
writeXMLPolyDataFile = traits.Bool(
desc="Flag to make use of XML files when reading and writing vtkPolyData.",
argstr="--writeXMLPolyDataFile ",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractCreateGuideFiberOutputSpec(TraitedSpec):
outputFiber = File(desc="Required: output guide fiber file name", exists=True)
class gtractCreateGuideFiber(SEMLikeCommandLine):
"""title: Create Guide Fiber
category: Diffusion.GTRACT
description: This program will create a guide fiber by averaging fibers from a previously generated tract.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractCreateGuideFiberInputSpec
output_spec = gtractCreateGuideFiberOutputSpec
_cmd = " gtractCreateGuideFiber "
_outputs_filenames = {"outputFiber": "outputFiber.vtk"}
_redirect_x = False
class gtractAnisotropyMapInputSpec(CommandLineInputSpec):
inputTensorVolume = File(
desc="Required: input file containing the diffusion tensor image",
exists=True,
argstr="--inputTensorVolume %s",
)
anisotropyType = traits.Enum(
"ADC",
"FA",
"RA",
"VR",
"AD",
"RD",
"LI",
desc="Anisotropy Mapping Type: ADC, FA, RA, VR, AD, RD, LI",
argstr="--anisotropyType %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the selected kind of anisotropy scalar.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractAnisotropyMapOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the selected kind of anisotropy scalar.",
exists=True,
)
class gtractAnisotropyMap(SEMLikeCommandLine):
"""title: Anisotropy Map
category: Diffusion.GTRACT
description: This program will generate a scalar map of anisotropy, given a tensor representation. Anisotropy images are used for fiber tracking, but the anisotropy scalars are not defined along the path. Instead, the tensor representation is included as point data allowing all of these metrics to be computed using only the fiber tract point data. The images can be saved in any ITK supported format, but it is suggested that you use an image format that supports the definition of the image origin. This includes NRRD, NifTI, and Meta formats. These images can also be used for scalar analysis including regional anisotropy measures or VBM style analysis.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractAnisotropyMapInputSpec
output_spec = gtractAnisotropyMapOutputSpec
_cmd = " gtractAnisotropyMap "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractClipAnisotropyInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input image file name", exists=True, argstr="--inputVolume %s"
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the clipped anisotropy image",
argstr="--outputVolume %s",
)
clipFirstSlice = traits.Bool(
desc="Clip the first slice of the anisotropy image", argstr="--clipFirstSlice "
)
clipLastSlice = traits.Bool(
desc="Clip the last slice of the anisotropy image", argstr="--clipLastSlice "
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractClipAnisotropyOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the clipped anisotropy image",
exists=True,
)
class gtractClipAnisotropy(SEMLikeCommandLine):
"""title: Clip Anisotropy
category: Diffusion.GTRACT
description: This program will zero the first and/or last slice of an anisotropy image, creating a clipped anisotropy image.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractClipAnisotropyInputSpec
output_spec = gtractClipAnisotropyOutputSpec
_cmd = " gtractClipAnisotropy "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractResampleB0InputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input file containing the 4D image",
exists=True,
argstr="--inputVolume %s",
)
inputAnatomicalVolume = File(
desc="Required: input file containing the anatomical image defining the origin, spacing and size of the resampled image (template)",
exists=True,
argstr="--inputAnatomicalVolume %s",
)
inputTransform = File(
desc="Required: input Rigid OR Bspline transform file name",
exists=True,
argstr="--inputTransform %s",
)
vectorIndex = traits.Int(
desc="Index in the diffusion weighted image set for the B0 image",
argstr="--vectorIndex %d",
)
transformType = traits.Enum(
"Rigid",
"B-Spline",
desc="Transform type: Rigid, B-Spline",
argstr="--transformType %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the resampled input image.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractResampleB0OutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the resampled input image.",
exists=True,
)
class gtractResampleB0(SEMLikeCommandLine):
"""title: Resample B0
category: Diffusion.GTRACT
description: This program will resample a signed short image using either a Rigid or B-Spline transform. The user must specify a template image that will be used to define the origin, orientation, spacing, and size of the resampled image.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractResampleB0InputSpec
output_spec = gtractResampleB0OutputSpec
_cmd = " gtractResampleB0 "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractInvertRigidTransformInputSpec(CommandLineInputSpec):
inputTransform = File(
desc="Required: input rigid transform file name",
exists=True,
argstr="--inputTransform %s",
)
outputTransform = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: output transform file name",
argstr="--outputTransform %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractInvertRigidTransformOutputSpec(TraitedSpec):
outputTransform = File(desc="Required: output transform file name", exists=True)
class gtractInvertRigidTransform(SEMLikeCommandLine):
"""title: Rigid Transform Inversion
category: Diffusion.GTRACT
description: This program will invert a Rigid transform.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractInvertRigidTransformInputSpec
output_spec = gtractInvertRigidTransformOutputSpec
_cmd = " gtractInvertRigidTransform "
_outputs_filenames = {"outputTransform": "outputTransform.h5"}
_redirect_x = False
class gtractImageConformityInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input file containing the signed short image to reorient without resampling.",
exists=True,
argstr="--inputVolume %s",
)
inputReferenceVolume = File(
desc="Required: input file containing the standard image to clone the characteristics of.",
exists=True,
argstr="--inputReferenceVolume %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output Nrrd or Nifti file containing the reoriented image in reference image space.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractImageConformityOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output Nrrd or Nifti file containing the reoriented image in reference image space.",
exists=True,
)
class gtractImageConformity(SEMLikeCommandLine):
"""title: Image Conformity
category: Diffusion.GTRACT
description: This program will straighten out the Direction and Origin to match the Reference Image.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractImageConformityInputSpec
output_spec = gtractImageConformityOutputSpec
_cmd = " gtractImageConformity "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class compareTractInclusionInputSpec(CommandLineInputSpec):
testFiber = File(
desc="Required: test fiber tract file name",
exists=True,
argstr="--testFiber %s",
)
standardFiber = File(
desc="Required: standard fiber tract file name",
exists=True,
argstr="--standardFiber %s",
)
closeness = traits.Float(
desc="Closeness of every test fiber to some fiber in the standard tract, computed as a sum of squares of spatial differences of standard points",
argstr="--closeness %f",
)
numberOfPoints = traits.Int(
desc="Number of points in comparison fiber pairs", argstr="--numberOfPoints %d"
)
testForBijection = traits.Bool(
desc="Flag to apply the closeness criterion both ways",
argstr="--testForBijection ",
)
testForFiberCardinality = traits.Bool(
desc="Flag to require the same number of fibers in both tracts",
argstr="--testForFiberCardinality ",
)
writeXMLPolyDataFile = traits.Bool(
desc="Flag to make use of XML files when reading and writing vtkPolyData.",
argstr="--writeXMLPolyDataFile ",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class compareTractInclusionOutputSpec(TraitedSpec):
pass
class compareTractInclusion(SEMLikeCommandLine):
"""title: Compare Tracts
category: Diffusion.GTRACT
description: This program will halt with a status code indicating whether a test tract is nearly enough included in a standard tract in the sense that every fiber in the test tract has a low enough sum of squares distance to some fiber in the standard tract modulo spline resampling of every fiber to a fixed number of points.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = compareTractInclusionInputSpec
output_spec = compareTractInclusionOutputSpec
_cmd = " compareTractInclusion "
_outputs_filenames = {}
_redirect_x = False
class gtractFastMarchingTrackingInputSpec(CommandLineInputSpec):
inputTensorVolume = File(
desc="Required: input tensor image file name",
exists=True,
argstr="--inputTensorVolume %s",
)
inputAnisotropyVolume = File(
desc="Required: input anisotropy image file name",
exists=True,
argstr="--inputAnisotropyVolume %s",
)
inputCostVolume = File(
desc="Required: input vcl_cost image file name",
exists=True,
argstr="--inputCostVolume %s",
)
inputStartingSeedsLabelMapVolume = File(
desc="Required: input starting seeds LabelMap image file name",
exists=True,
argstr="--inputStartingSeedsLabelMapVolume %s",
)
startingSeedsLabel = traits.Int(
desc="Label value for Starting Seeds", argstr="--startingSeedsLabel %d"
)
outputTract = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output vtkPolydata file containing tract lines and the point data collected along them.",
argstr="--outputTract %s",
)
writeXMLPolyDataFile = traits.Bool(
desc="Flag to make use of the XML format for vtkPolyData fiber tracts.",
argstr="--writeXMLPolyDataFile ",
)
numberOfIterations = traits.Int(
desc="Number of iterations used for the optimization",
argstr="--numberOfIterations %d",
)
seedThreshold = traits.Float(
desc="Anisotropy threshold used for seed selection", argstr="--seedThreshold %f"
)
trackingThreshold = traits.Float(
desc="Anisotropy threshold used for fiber tracking",
argstr="--trackingThreshold %f",
)
costStepSize = traits.Float(
desc="Cost image sub-voxel sampling", argstr="--costStepSize %f"
)
maximumStepSize = traits.Float(
desc="Maximum step size to move when tracking", argstr="--maximumStepSize %f"
)
minimumStepSize = traits.Float(
desc="Minimum step size to move when tracking", argstr="--minimumStepSize %f"
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractFastMarchingTrackingOutputSpec(TraitedSpec):
outputTract = File(
desc="Required: name of output vtkPolydata file containing tract lines and the point data collected along them.",
exists=True,
)
class gtractFastMarchingTracking(SEMLikeCommandLine):
"""title: Fast Marching Tracking
category: Diffusion.GTRACT
description: This program will use a fast marching fiber tracking algorithm to identify fiber tracts from a tensor image. This program is the second portion of the algorithm. The user must first run gtractCostFastMarching to generate the vcl_cost image. The second step of the algorithm implemented here is a gradient descent soplution from the defined ending region back to the seed points specified in gtractCostFastMarching. This algorithm is roughly based on the work by G. Parker et al. from IEEE Transactions On Medical Imaging, 21(5): 505-512, 2002. An additional feature of including anisotropy into the vcl_cost function calculation is included.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris. The original code here was developed by Daisy Espino.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractFastMarchingTrackingInputSpec
output_spec = gtractFastMarchingTrackingOutputSpec
_cmd = " gtractFastMarchingTracking "
_outputs_filenames = {"outputTract": "outputTract.vtk"}
_redirect_x = False
class gtractInvertDisplacementFieldInputSpec(CommandLineInputSpec):
baseImage = File(
desc="Required: base image used to define the size of the inverse field",
exists=True,
argstr="--baseImage %s",
)
deformationImage = File(
desc="Required: Displacement field image",
exists=True,
argstr="--deformationImage %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: Output deformation field",
argstr="--outputVolume %s",
)
subsamplingFactor = traits.Int(
desc="Subsampling factor for the deformation field",
argstr="--subsamplingFactor %d",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractInvertDisplacementFieldOutputSpec(TraitedSpec):
outputVolume = File(desc="Required: Output deformation field", exists=True)
class gtractInvertDisplacementField(SEMLikeCommandLine):
"""title: Invert Displacement Field
category: Diffusion.GTRACT
description: This program will invert a deformatrion field. The size of the deformation field is defined by an example image provided by the user
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractInvertDisplacementFieldInputSpec
output_spec = gtractInvertDisplacementFieldOutputSpec
_cmd = " gtractInvertDisplacementField "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
class gtractCoRegAnatomyInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input vector image file name. It is recommended that the input volume is the skull stripped baseline image of the DWI scan.",
exists=True,
argstr="--inputVolume %s",
)
inputAnatomicalVolume = File(
desc="Required: input anatomical image file name. It is recommended that that the input anatomical image has been skull stripped and has the same orientation as the DWI scan.",
exists=True,
argstr="--inputAnatomicalVolume %s",
)
vectorIndex = traits.Int(
desc="Vector image index in the moving image (within the DWI) to be used for registration.",
argstr="--vectorIndex %d",
)
inputRigidTransform = File(
desc="Required (for B-Spline type co-registration): input rigid transform file name. Used as a starting point for the anatomical B-Spline registration.",
exists=True,
argstr="--inputRigidTransform %s",
)
outputTransformName = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: filename for the fit transform.",
argstr="--outputTransformName %s",
)
transformType = traits.Enum(
"Rigid",
"Bspline",
desc="Transform Type: Rigid|Bspline",
argstr="--transformType %s",
)
numberOfIterations = traits.Int(
desc="Number of iterations in the selected 3D fit",
argstr="--numberOfIterations %d",
)
gridSize = InputMultiPath(
traits.Int,
desc="Number of grid subdivisions in all 3 directions",
sep=",",
argstr="--gridSize %s",
)
borderSize = traits.Int(desc="Size of border", argstr="--borderSize %d")
numberOfHistogramBins = traits.Int(
desc="Number of histogram bins", argstr="--numberOfHistogramBins %d"
)
spatialScale = traits.Int(
desc="Scales the number of voxels in the image by this value to specify the number of voxels used in the registration",
argstr="--spatialScale %d",
)
convergence = traits.Float(desc="Convergence Factor", argstr="--convergence %f")
gradientTolerance = traits.Float(
desc="Gradient Tolerance", argstr="--gradientTolerance %f"
)
maxBSplineDisplacement = traits.Float(
desc=" Sets the maximum allowed displacements in image physical coordinates for BSpline control grid along each axis. A value of 0.0 indicates that the problem should be unbounded. NOTE: This only constrains the BSpline portion, and does not limit the displacement from the associated bulk transform. This can lead to a substantial reduction in computation time in the BSpline optimizer., ",
argstr="--maxBSplineDisplacement %f",
)
maximumStepSize = traits.Float(
desc="Maximum permitted step size to move in the selected 3D fit",
argstr="--maximumStepSize %f",
)
minimumStepSize = traits.Float(
desc="Minimum required step size to move in the selected 3D fit without converging -- decrease this to make the fit more exacting",
argstr="--minimumStepSize %f",
)
translationScale = traits.Float(
desc="How much to scale up changes in position compared to unit rotational changes in radians -- decrease this to put more translation in the fit",
argstr="--translationScale %f",
)
relaxationFactor = traits.Float(
desc="Fraction of gradient from Jacobian to attempt to move in the selected 3D fit",
argstr="--relaxationFactor %f",
)
numberOfSamples = traits.Int(
desc="The number of voxels sampled for mutual information computation. Increase this for a slower, more careful fit. NOTE that it is suggested to use samplingPercentage instead of this option. However, if set, it overwrites the samplingPercentage option. ",
argstr="--numberOfSamples %d",
)
samplingPercentage = traits.Float(
desc="This is a number in (0.0,1.0] interval that shows the percentage of the input fixed image voxels that are sampled for mutual information computation. Increase this for a slower, more careful fit. You can also limit the sampling focus with ROI masks and ROIAUTO mask generation. The default is to use approximately 5% of voxels (for backwards compatibility 5% ~= 500000/(256*256*256)). Typical values range from 1% for low detail images to 20% for high detail images.",
argstr="--samplingPercentage %f",
)
useMomentsAlign = traits.Bool(
desc="MomentsAlign assumes that the center of mass of the images represent similar structures. Perform a MomentsAlign registration as part of the sequential registration steps. This option MUST come first, and CAN NOT be used with either CenterOfHeadLAlign, GeometryAlign, or initialTransform file. This family of options superceeds the use of transformType if any of them are set.",
argstr="--useMomentsAlign ",
)
useGeometryAlign = traits.Bool(
desc="GeometryAlign on assumes that the center of the voxel lattice of the images represent similar structures. Perform a GeometryCenterAlign registration as part of the sequential registration steps. This option MUST come first, and CAN NOT be used with either MomentsAlign, CenterOfHeadAlign, or initialTransform file. This family of options superceeds the use of transformType if any of them are set.",
argstr="--useGeometryAlign ",
)
useCenterOfHeadAlign = traits.Bool(
desc="CenterOfHeadAlign attempts to find a hemisphere full of foreground voxels from the superior direction as an estimate of where the center of a head shape would be to drive a center of mass estimate. Perform a CenterOfHeadAlign registration as part of the sequential registration steps. This option MUST come first, and CAN NOT be used with either MomentsAlign, GeometryAlign, or initialTransform file. This family of options superceeds the use of transformType if any of them are set.",
argstr="--useCenterOfHeadAlign ",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractCoRegAnatomyOutputSpec(TraitedSpec):
outputTransformName = File(
desc="Required: filename for the fit transform.", exists=True
)
class gtractCoRegAnatomy(SEMLikeCommandLine):
"""title: Coregister B0 to Anatomy B-Spline
category: Diffusion.GTRACT
description: This program will register a Nrrd diffusion weighted 4D vector image to a fixed anatomical image. Two registration methods are supported for alignment with anatomical images: Rigid and B-Spline. The rigid registration performs a rigid body registration with the anatomical images and should be done as well to initialize the B-Spline transform. The B-SPline transform is the deformable transform, where the user can control the amount of deformation based on the number of control points as well as the maximum distance that these points can move. The B-Spline registration places a low dimensional grid in the image, which is deformed. This allows for some susceptibility related distortions to be removed from the diffusion weighted images. In general the amount of motion in the slice selection and read-out directions direction should be kept low. The distortion is in the phase encoding direction in the images. It is recommended that skull stripped (i.e. image containing only brain with skull removed) images shoud be used for image co-registration with the B-Spline transform.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractCoRegAnatomyInputSpec
output_spec = gtractCoRegAnatomyOutputSpec
_cmd = " gtractCoRegAnatomy "
_outputs_filenames = {"outputTransformName": "outputTransformName.h5"}
_redirect_x = False
class gtractResampleDWIInPlaceInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input image is a 4D NRRD image.",
exists=True,
argstr="--inputVolume %s",
)
referenceVolume = File(
desc="If provided, resample to the final space of the referenceVolume 3D data set.",
exists=True,
argstr="--referenceVolume %s",
)
outputResampledB0 = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Convenience function for extracting the first index location (assumed to be the B0)",
argstr="--outputResampledB0 %s",
)
inputTransform = File(
desc="Required: transform file derived from rigid registration of b0 image to reference structural image.",
exists=True,
argstr="--inputTransform %s",
)
warpDWITransform = File(
desc="Optional: transform file to warp gradient volumes.",
exists=True,
argstr="--warpDWITransform %s",
)
debugLevel = traits.Int(
desc="Display debug messages, and produce debug intermediate results. 0=OFF, 1=Minimal, 10=Maximum debugging.",
argstr="--debugLevel %d",
)
imageOutputSize = InputMultiPath(
traits.Int,
desc="The voxel lattice for the output image, padding is added if necessary. NOTE: if 0,0,0, then the inputVolume size is used.",
sep=",",
argstr="--imageOutputSize %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: output image (NRRD file) that has been rigidly transformed into the space of the structural image and padded if image padding was changed from 0,0,0 default.",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractResampleDWIInPlaceOutputSpec(TraitedSpec):
outputResampledB0 = File(
desc="Convenience function for extracting the first index location (assumed to be the B0)",
exists=True,
)
outputVolume = File(
desc="Required: output image (NRRD file) that has been rigidly transformed into the space of the structural image and padded if image padding was changed from 0,0,0 default.",
exists=True,
)
class gtractResampleDWIInPlace(SEMLikeCommandLine):
"""title: Resample DWI In Place
category: Diffusion.GTRACT
description: Resamples DWI image to structural image.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta, Greg Harris, Hans Johnson, and Joy Matsui.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractResampleDWIInPlaceInputSpec
output_spec = gtractResampleDWIInPlaceOutputSpec
_cmd = " gtractResampleDWIInPlace "
_outputs_filenames = {
"outputResampledB0": "outputResampledB0.nii",
"outputVolume": "outputVolume.nii",
}
_redirect_x = False
class gtractCostFastMarchingInputSpec(CommandLineInputSpec):
inputTensorVolume = File(
desc="Required: input tensor image file name",
exists=True,
argstr="--inputTensorVolume %s",
)
inputAnisotropyVolume = File(
desc="Required: input anisotropy image file name",
exists=True,
argstr="--inputAnisotropyVolume %s",
)
inputStartingSeedsLabelMapVolume = File(
desc="Required: input starting seeds LabelMap image file name",
exists=True,
argstr="--inputStartingSeedsLabelMapVolume %s",
)
startingSeedsLabel = traits.Int(
desc="Label value for Starting Seeds", argstr="--startingSeedsLabel %d"
)
outputCostVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Output vcl_cost image",
argstr="--outputCostVolume %s",
)
outputSpeedVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Output speed image",
argstr="--outputSpeedVolume %s",
)
anisotropyWeight = traits.Float(
desc="Anisotropy weight used for vcl_cost function calculations",
argstr="--anisotropyWeight %f",
)
stoppingValue = traits.Float(
desc="Terminiating value for vcl_cost function estimation",
argstr="--stoppingValue %f",
)
seedThreshold = traits.Float(
desc="Anisotropy threshold used for seed selection", argstr="--seedThreshold %f"
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractCostFastMarchingOutputSpec(TraitedSpec):
outputCostVolume = File(desc="Output vcl_cost image", exists=True)
outputSpeedVolume = File(desc="Output speed image", exists=True)
class gtractCostFastMarching(SEMLikeCommandLine):
"""title: Cost Fast Marching
category: Diffusion.GTRACT
description: This program will use a fast marching fiber tracking algorithm to identify fiber tracts from a tensor image. This program is the first portion of the algorithm. The user must first run gtractFastMarchingTracking to generate the actual fiber tracts. This algorithm is roughly based on the work by G. Parker et al. from IEEE Transactions On Medical Imaging, 21(5): 505-512, 2002. An additional feature of including anisotropy into the vcl_cost function calculation is included.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris. The original code here was developed by Daisy Espino.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractCostFastMarchingInputSpec
output_spec = gtractCostFastMarchingOutputSpec
_cmd = " gtractCostFastMarching "
_outputs_filenames = {
"outputCostVolume": "outputCostVolume.nrrd",
"outputSpeedVolume": "outputSpeedVolume.nrrd",
}
_redirect_x = False
class gtractFiberTrackingInputSpec(CommandLineInputSpec):
inputTensorVolume = File(
desc="Required (for Free, Streamline, GraphSearch, and Guided fiber tracking methods): input tensor image file name",
exists=True,
argstr="--inputTensorVolume %s",
)
inputAnisotropyVolume = File(
desc="Required (for Free, Streamline, GraphSearch, and Guided fiber tracking methods): input anisotropy image file name",
exists=True,
argstr="--inputAnisotropyVolume %s",
)
inputStartingSeedsLabelMapVolume = File(
desc="Required (for Free, Streamline, GraphSearch, and Guided fiber tracking methods): input starting seeds LabelMap image file name",
exists=True,
argstr="--inputStartingSeedsLabelMapVolume %s",
)
startingSeedsLabel = traits.Int(
desc="Label value for Starting Seeds (required if Label number used to create seed point in Slicer was not 1)",
argstr="--startingSeedsLabel %d",
)
inputEndingSeedsLabelMapVolume = File(
desc="Required (for Streamline, GraphSearch, and Guided fiber tracking methods): input ending seeds LabelMap image file name",
exists=True,
argstr="--inputEndingSeedsLabelMapVolume %s",
)
endingSeedsLabel = traits.Int(
desc="Label value for Ending Seeds (required if Label number used to create seed point in Slicer was not 1)",
argstr="--endingSeedsLabel %d",
)
inputTract = File(
desc="Required (for Guided fiber tracking method): guide fiber in vtkPolydata file containing one tract line.",
exists=True,
argstr="--inputTract %s",
)
outputTract = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required (for Free, Streamline, GraphSearch, and Guided fiber tracking methods): name of output vtkPolydata file containing tract lines and the point data collected along them.",
argstr="--outputTract %s",
)
writeXMLPolyDataFile = traits.Bool(
desc="Flag to make use of the XML format for vtkPolyData fiber tracts.",
argstr="--writeXMLPolyDataFile ",
)
trackingMethod = traits.Enum(
"Guided",
"Free",
"Streamline",
"GraphSearch",
desc="Fiber tracking Filter Type: Guided|Free|Streamline|GraphSearch",
argstr="--trackingMethod %s",
)
guidedCurvatureThreshold = traits.Float(
desc="Guided Curvature Threshold (Degrees)",
argstr="--guidedCurvatureThreshold %f",
)
maximumGuideDistance = traits.Float(
desc="Maximum distance for using the guide fiber direction",
argstr="--maximumGuideDistance %f",
)
seedThreshold = traits.Float(
desc="Anisotropy threshold for seed selection (recommended for Free fiber tracking)",
argstr="--seedThreshold %f",
)
trackingThreshold = traits.Float(
desc="Anisotropy threshold for fiber tracking (anisotropy values of the next point along the path)",
argstr="--trackingThreshold %f",
)
curvatureThreshold = traits.Float(
desc="Curvature threshold in degrees (recommended for Free fiber tracking)",
argstr="--curvatureThreshold %f",
)
branchingThreshold = traits.Float(
desc="Anisotropy Branching threshold (recommended for GraphSearch fiber tracking method)",
argstr="--branchingThreshold %f",
)
maximumBranchPoints = traits.Int(
desc="Maximum branch points (recommended for GraphSearch fiber tracking method)",
argstr="--maximumBranchPoints %d",
)
useRandomWalk = traits.Bool(
desc="Flag to use random walk.", argstr="--useRandomWalk "
)
randomSeed = traits.Int(
desc="Random number generator seed", argstr="--randomSeed %d"
)
branchingAngle = traits.Float(
desc="Branching angle in degrees (recommended for GraphSearch fiber tracking method)",
argstr="--branchingAngle %f",
)
minimumLength = traits.Float(
desc="Minimum fiber length. Helpful for filtering invalid tracts.",
argstr="--minimumLength %f",
)
maximumLength = traits.Float(
desc="Maximum fiber length (voxels)", argstr="--maximumLength %f"
)
stepSize = traits.Float(desc="Fiber tracking step size", argstr="--stepSize %f")
useLoopDetection = traits.Bool(
desc="Flag to make use of loop detection.", argstr="--useLoopDetection "
)
useTend = traits.Bool(
desc="Flag to make use of Tend F and Tend G parameters.", argstr="--useTend "
)
tendF = traits.Float(desc="Tend F parameter", argstr="--tendF %f")
tendG = traits.Float(desc="Tend G parameter", argstr="--tendG %f")
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractFiberTrackingOutputSpec(TraitedSpec):
outputTract = File(
desc="Required (for Free, Streamline, GraphSearch, and Guided fiber tracking methods): name of output vtkPolydata file containing tract lines and the point data collected along them.",
exists=True,
)
class gtractFiberTracking(SEMLikeCommandLine):
"""title: Fiber Tracking
category: Diffusion.GTRACT
description: This program implements four fiber tracking methods (Free, Streamline, GraphSearch, Guided). The output of the fiber tracking is vtkPolyData (i.e. Polylines) that can be loaded into Slicer3 for visualization. The poly data can be saved in either old VTK format files (.vtk) or in the new VTK XML format (.xml). The polylines contain point data that defines ther Tensor at each point along the fiber tract. This can then be used to rendered as glyphs in Slicer3 and can be used to define severeal scalar measures without referencing back to the anisotropy images. (1) Free tracking is a basic streamlines algorithm. This is a direct implementation of the method original proposed by Basser et al. The tracking follows the primarty eigenvector. The tracking begins with seed points in the starting region. Only those voxels above the specified anisotropy threshold in the starting region are used as seed points. Tracking terminates either as a result of maximum fiber length, low ansiotropy, or large curvature. This is a great way to explore your data. (2) The streamlines algorithm is a direct implementation of the method originally proposed by Basser et al. The tracking follows the primary eigenvector. The tracking begins with seed points in the starting region. Only those voxels above the specified anisotropy threshold in the starting region are used as seed points. Tracking terminates either by reaching the ending region or reaching some stopping criteria. Stopping criteria are specified using the following parameters: tracking threshold, curvature threshold, and max length. Only paths terminating in the ending region are kept in this method. The TEND algorithm proposed by Lazar et al. (Human Brain Mapping 18:306-321, 2003) has been instrumented. This can be enabled using the --useTend option while performing Streamlines tracking. This utilizes the entire diffusion tensor to deflect the incoming vector instead of simply following the primary eigenvector. The TEND parameters are set using the --tendF and --tendG options. (3) Graph Search tracking is the first step in the full GTRACT algorithm developed by Cheng et al. (NeuroImage 31(3): 1075-1085, 2006) for finding the tracks in a tensor image. This method was developed to generate fibers in a Tensor representation where crossing fibers occur. The graph search algorithm follows the primary eigenvector in non-ambigous regions and utilizes branching and a graph search algorithm in ambigous regions. Ambiguous tracking regions are defined based on two criteria: Branching Al Threshold (anisotropy values below this value and above the traching threshold) and Curvature Major Eigen (angles of the primary eigenvector direction and the current tracking direction). In regions that meet this criteria, two or three tracking paths are considered. The first is the standard primary eigenvector direction. The second is the seconadary eigenvector direction. This is based on the assumption that these regions may be prolate regions. If the Random Walk option is selected then a third direction is also considered. This direction is defined by a cone pointing from the current position to the centroid of the ending region. The interior angle of the cone is specified by the user with the Branch/Guide Angle parameter. A vector contained inside of the cone is selected at random and used as the third direction. This method can also utilize the TEND option where the primary tracking direction is that specified by the TEND method instead of the primary eigenvector. The parameter '--maximumBranchPoints' allows the tracking to have this number of branches being considered at a time. If this number of branch points is exceeded at any time, then the algorithm will revert back to a streamline alogrithm until the number of branches is reduced. This allows the user to constrain the computational complexity of the algorithm. (4) The second phase of the GTRACT algorithm is Guided Tracking. This method incorporates anatomical information about the track orientation using an initial guess of the fiber track. In the originally proposed GTRACT method, this would be created from the fibers resulting from the Graph Search tracking. However, in practice this can be created using any method and could be defined manually. To create the guide fiber the program gtractCreateGuideFiber can be used. This program will load a fiber tract that has been generated and create a centerline representation of the fiber tract (i.e. a single fiber). In this method, the fiber tracking follows the primary eigenvector direction unless it deviates from the guide fiber track by a angle greater than that specified by the '--guidedCurvatureThreshold' parameter. The user must specify the guide fiber when running this program.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta, Greg Harris and Yongqiang Zhao.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractFiberTrackingInputSpec
output_spec = gtractFiberTrackingOutputSpec
_cmd = " gtractFiberTracking "
_outputs_filenames = {"outputTract": "outputTract.vtk"}
_redirect_x = False
class extractNrrdVectorIndexInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input file containing the vector that will be extracted",
exists=True,
argstr="--inputVolume %s",
)
vectorIndex = traits.Int(
desc="Index in the vector image to extract", argstr="--vectorIndex %d"
)
setImageOrientation = traits.Enum(
"AsAcquired",
"Axial",
"Coronal",
"Sagittal",
desc="Sets the image orientation of the extracted vector (Axial, Coronal, Sagittal)",
argstr="--setImageOrientation %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the vector image at the given index",
argstr="--outputVolume %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class extractNrrdVectorIndexOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the vector image at the given index",
exists=True,
)
class extractNrrdVectorIndex(SEMLikeCommandLine):
"""title: Extract Nrrd Index
category: Diffusion.GTRACT
description: This program will extract a 3D image (single vector) from a vector 3D image at a given vector index.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = extractNrrdVectorIndexInputSpec
output_spec = extractNrrdVectorIndexOutputSpec
_cmd = " extractNrrdVectorIndex "
_outputs_filenames = {"outputVolume": "outputVolume.nii"}
_redirect_x = False
class gtractResampleFibersInputSpec(CommandLineInputSpec):
inputForwardDeformationFieldVolume = File(
desc="Required: input forward deformation field image file name",
exists=True,
argstr="--inputForwardDeformationFieldVolume %s",
)
inputReverseDeformationFieldVolume = File(
desc="Required: input reverse deformation field image file name",
exists=True,
argstr="--inputReverseDeformationFieldVolume %s",
)
inputTract = File(
desc="Required: name of input vtkPolydata file containing tract lines.",
exists=True,
argstr="--inputTract %s",
)
outputTract = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output vtkPolydata file containing tract lines and the point data collected along them.",
argstr="--outputTract %s",
)
writeXMLPolyDataFile = traits.Bool(
desc="Flag to make use of the XML format for vtkPolyData fiber tracts.",
argstr="--writeXMLPolyDataFile ",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractResampleFibersOutputSpec(TraitedSpec):
outputTract = File(
desc="Required: name of output vtkPolydata file containing tract lines and the point data collected along them.",
exists=True,
)
class gtractResampleFibers(SEMLikeCommandLine):
"""title: Resample Fibers
category: Diffusion.GTRACT
description: This program will resample a fiber tract with respect to a pair of deformation fields that represent the forward and reverse deformation fields.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractResampleFibersInputSpec
output_spec = gtractResampleFibersOutputSpec
_cmd = " gtractResampleFibers "
_outputs_filenames = {"outputTract": "outputTract.vtk"}
_redirect_x = False
class gtractTensorInputSpec(CommandLineInputSpec):
inputVolume = File(
desc="Required: input image 4D NRRD image. Must contain data based on at least 6 distinct diffusion directions. The inputVolume is allowed to have multiple b0 and gradient direction images. Averaging of the b0 image is done internally in this step. Prior averaging of the DWIs is not required.",
exists=True,
argstr="--inputVolume %s",
)
outputVolume = traits.Either(
traits.Bool,
File(),
hash_files=False,
desc="Required: name of output NRRD file containing the Tensor vector image",
argstr="--outputVolume %s",
)
medianFilterSize = InputMultiPath(
traits.Int,
desc="Median filter radius in all 3 directions",
sep=",",
argstr="--medianFilterSize %s",
)
maskProcessingMode = traits.Enum(
"NOMASK",
"ROIAUTO",
"ROI",
desc="ROIAUTO: mask is implicitly defined using a otsu forground and hole filling algorithm. ROI: Uses the masks to define what parts of the image should be used for computing the transform. NOMASK: no mask used",
argstr="--maskProcessingMode %s",
)
maskVolume = File(
desc="Mask Image, if maskProcessingMode is ROI",
exists=True,
argstr="--maskVolume %s",
)
backgroundSuppressingThreshold = traits.Int(
desc="Image threshold to suppress background. This sets a threshold used on the b0 image to remove background voxels from processing. Typically, values of 100 and 500 work well for Siemens and GE DTI data, respectively. Check your data particularly in the globus pallidus to make sure the brain tissue is not being eliminated with this threshold.",
argstr="--backgroundSuppressingThreshold %d",
)
resampleIsotropic = traits.Bool(
desc="Flag to resample to isotropic voxels. Enabling this feature is recommended if fiber tracking will be performed.",
argstr="--resampleIsotropic ",
)
size = traits.Float(desc="Isotropic voxel size to resample to", argstr="--size %f")
b0Index = traits.Int(
desc="Index in input vector index to extract", argstr="--b0Index %d"
)
applyMeasurementFrame = traits.Bool(
desc="Flag to apply the measurement frame to the gradient directions",
argstr="--applyMeasurementFrame ",
)
ignoreIndex = InputMultiPath(
traits.Int,
desc="Ignore diffusion gradient index. Used to remove specific gradient directions with artifacts.",
sep=",",
argstr="--ignoreIndex %s",
)
numberOfThreads = traits.Int(
desc="Explicitly specify the maximum number of threads to use.",
argstr="--numberOfThreads %d",
)
class gtractTensorOutputSpec(TraitedSpec):
outputVolume = File(
desc="Required: name of output NRRD file containing the Tensor vector image",
exists=True,
)
class gtractTensor(SEMLikeCommandLine):
"""title: Tensor Estimation
category: Diffusion.GTRACT
description: This step will convert a b-value averaged diffusion tensor image to a 3x3 tensor voxel image. This step takes the diffusion tensor image data and generates a tensor representation of the data based on the signal intensity decay, b values applied, and the diffusion difrections. The apparent diffusion coefficient for a given orientation is computed on a pixel-by-pixel basis by fitting the image data (voxel intensities) to the Stejskal-Tanner equation. If at least 6 diffusion directions are used, then the diffusion tensor can be computed. This program uses itk::DiffusionTensor3DReconstructionImageFilter. The user can adjust background threshold, median filter, and isotropic resampling.
version: 4.0.0
documentation-url: http://wiki.slicer.org/slicerWiki/index.php/Modules:GTRACT
license: http://mri.radiology.uiowa.edu/copyright/GTRACT-Copyright.txt
contributor: This tool was developed by Vincent Magnotta and Greg Harris.
acknowledgements: Funding for this version of the GTRACT program was provided by NIH/NINDS R01NS050568-01A2S1
"""
input_spec = gtractTensorInputSpec
output_spec = gtractTensorOutputSpec
_cmd = " gtractTensor "
_outputs_filenames = {"outputVolume": "outputVolume.nrrd"}
_redirect_x = False
|