1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
import os
import nibabel as nb
import numpy as np
import pytest
from ...testing import utils
from ..confounds import CompCor, TCompCor, ACompCor
def close_up_to_column_sign(a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
"""SVD can produce sign flips on a per-column basis."""
a = np.asanyarray(a)
b = np.asanyarray(b)
kwargs = dict(rtol=rtol, atol=atol, equal_nan=equal_nan)
a, b = np.array(a), np.array(b)
if np.allclose(a, b, **kwargs):
return True
ret = True
for acol, bcol in zip(a.T, b.T):
ret &= np.allclose(acol, bcol, **kwargs) or np.allclose(acol, -bcol, **kwargs)
if not ret:
break
return ret
@pytest.mark.parametrize(
"a, b, close",
[
([[0.1, 0.2], [0.3, 0.4]], [[-0.1, 0.2], [-0.3, 0.4]], True),
([[0.1, 0.2], [0.3, 0.4]], [[-0.1, 0.2], [0.3, -0.4]], False),
],
)
def test_close_up_to_column_sign(a, b, close):
a = np.asanyarray(a)
b = np.asanyarray(b)
assert close_up_to_column_sign(a, b) == close
# Sign flips of all columns never changes result
assert close_up_to_column_sign(a, -b) == close
assert close_up_to_column_sign(-a, b) == close
assert close_up_to_column_sign(-a, -b) == close
# Trivial case
assert close_up_to_column_sign(a, a)
assert close_up_to_column_sign(b, b)
class TestCompCor:
"""Note: Tests currently do a poor job of testing functionality"""
filenames = {
"functionalnii": "compcorfunc.nii",
"masknii": "compcormask.nii",
"masknii2": "compcormask2.nii",
"components_file": None,
}
@pytest.fixture(autouse=True)
def setup_class(self, tmpdir):
# setup
tmpdir.chdir()
noise = np.fromfunction(self.fake_noise_fun, self.fake_data.shape)
self.realigned_file = utils.save_toy_nii(
self.fake_data + noise, self.filenames["functionalnii"]
)
mask = np.ones(self.fake_data.shape[:3])
mask[0, 0, 0] = 0
mask[0, 0, 1] = 0
mask1 = utils.save_toy_nii(mask, self.filenames["masknii"])
other_mask = np.ones(self.fake_data.shape[:3])
other_mask[0, 1, 0] = 0
other_mask[1, 1, 0] = 0
mask2 = utils.save_toy_nii(other_mask, self.filenames["masknii2"])
self.mask_files = [mask1, mask2]
def test_compcor(self):
expected_components = [
[-0.1989607212, -0.5753813646],
[0.5692369697, 0.5674945949],
[-0.6662573243, 0.4675843432],
[0.4206466244, -0.3361270124],
[-0.1246655485, -0.1235705610],
]
self.run_cc(
CompCor(
num_components=6,
realigned_file=self.realigned_file,
mask_files=self.mask_files,
mask_index=0,
),
expected_components,
)
self.run_cc(
ACompCor(
num_components=6,
realigned_file=self.realigned_file,
mask_files=self.mask_files,
mask_index=0,
components_file="acc_components_file",
),
expected_components,
"aCompCor",
)
def test_compcor_variance_threshold_and_metadata(self):
expected_components = [
[-0.2027150345, -0.4954813834],
[0.2565929051, 0.7866217875],
[-0.3550986008, -0.0089784905],
[0.7512786244, -0.3599828482],
[-0.4500578942, 0.0778209345],
]
expected_metadata = {
"component": "CompCor00",
"mask": "mask",
"singular_value": "4.0720553036",
"variance_explained": "0.5527211465",
"cumulative_variance_explained": "0.5527211465",
"retained": "True",
}
ccinterface = CompCor(
variance_threshold=0.7,
realigned_file=self.realigned_file,
mask_files=self.mask_files,
mask_names=["mask"],
mask_index=1,
save_metadata=True,
)
self.run_cc(
ccinterface=ccinterface,
expected_components=expected_components,
expected_n_components=2,
expected_metadata=expected_metadata,
)
def test_tcompcor(self):
ccinterface = TCompCor(
num_components=6,
realigned_file=self.realigned_file,
percentile_threshold=0.75,
)
self.run_cc(
ccinterface,
[
[-0.1114536190, -0.4632908609],
[0.4566907310, 0.6983205193],
[-0.7132557407, 0.1340170559],
[0.5022537643, -0.5098322262],
[-0.1342351356, 0.1407855119],
],
"tCompCor",
)
def test_tcompcor_no_percentile(self):
ccinterface = TCompCor(num_components=6, realigned_file=self.realigned_file)
ccinterface.run()
mask = nb.load("mask_000.nii.gz").dataobj
num_nonmasked_voxels = np.count_nonzero(mask)
assert num_nonmasked_voxels == 1
def test_compcor_no_regress_poly(self):
self.run_cc(
CompCor(
num_components=6,
realigned_file=self.realigned_file,
mask_files=self.mask_files,
mask_index=0,
pre_filter=False,
),
[
[0.4451946442, -0.7683311482],
[-0.4285129505, -0.0926034137],
[0.5721540256, 0.5608764842],
[-0.5367548139, 0.0059943226],
[-0.0520809054, 0.2940637551],
],
)
def test_tcompcor_asymmetric_dim(self):
asymmetric_shape = (2, 3, 4, 5)
asymmetric_data = utils.save_toy_nii(
np.zeros(asymmetric_shape), "asymmetric.nii"
)
TCompCor(realigned_file=asymmetric_data).run()
assert nb.load("mask_000.nii.gz").shape == asymmetric_shape[:3]
def test_compcor_bad_input_shapes(self):
# dim 0 is < dim 0 of self.mask_files (2)
shape_less_than = (1, 2, 2, 5)
# dim 0 is > dim 0 of self.mask_files (2)
shape_more_than = (3, 3, 3, 5)
for data_shape in (shape_less_than, shape_more_than):
data_file = utils.save_toy_nii(np.zeros(data_shape), "temp.nii")
interface = CompCor(realigned_file=data_file, mask_files=self.mask_files[0])
with pytest.raises(ValueError):
interface.run() # Dimension mismatch
def test_tcompcor_bad_input_dim(self):
bad_dims = (2, 2, 2)
data_file = utils.save_toy_nii(np.zeros(bad_dims), "temp.nii")
interface = TCompCor(realigned_file=data_file)
with pytest.raises(ValueError):
interface.run() # Not a 4D file
def test_tcompcor_merge_intersect_masks(self):
for method in ["union", "intersect"]:
TCompCor(
realigned_file=self.realigned_file,
mask_files=self.mask_files,
merge_method=method,
).run()
if method == "union":
assert np.array_equal(
nb.load("mask_000.nii.gz").dataobj,
([[[0, 0], [0, 0]], [[0, 0], [1, 0]]]),
)
if method == "intersect":
assert np.array_equal(
nb.load("mask_000.nii.gz").dataobj,
([[[0, 0], [0, 0]], [[0, 1], [0, 0]]]),
)
def test_tcompcor_index_mask(self):
TCompCor(
realigned_file=self.realigned_file, mask_files=self.mask_files, mask_index=1
).run()
assert np.array_equal(
nb.load("mask_000.nii.gz").dataobj, ([[[0, 0], [0, 0]], [[0, 1], [0, 0]]])
)
def test_tcompcor_multi_mask_no_index(self):
interface = TCompCor(
realigned_file=self.realigned_file, mask_files=self.mask_files
)
with pytest.raises(ValueError):
interface.run() # more than one mask file
def run_cc(
self,
ccinterface,
expected_components,
expected_header="CompCor",
expected_n_components=None,
expected_metadata=None,
):
# run
ccresult = ccinterface.run()
# assert
expected_file = ccinterface._list_outputs()["components_file"]
assert ccresult.outputs.components_file == expected_file
assert os.path.exists(expected_file)
assert os.path.getsize(expected_file) > 0
with open(ccresult.outputs.components_file) as components_file:
header = components_file.readline().rstrip().split("\t")
components_data = np.loadtxt(components_file, delimiter="\t")
if expected_n_components is None:
expected_n_components = min(
ccinterface.inputs.num_components, self.fake_data.shape[3]
)
assert header == [
f"{expected_header}{i:02d}" for i in range(expected_n_components)
]
assert components_data.shape == (self.fake_data.shape[3], expected_n_components)
assert close_up_to_column_sign(components_data[:, :2], expected_components)
if ccinterface.inputs.save_metadata:
expected_metadata_file = ccinterface._list_outputs()["metadata_file"]
assert ccresult.outputs.metadata_file == expected_metadata_file
assert os.path.exists(expected_metadata_file)
assert os.path.getsize(expected_metadata_file) > 0
with open(ccresult.outputs.metadata_file) as metadata_file:
components_metadata = [
line.rstrip().split("\t") for line in metadata_file
]
components_metadata = dict(
zip(components_metadata[0], components_metadata[1])
)
assert components_metadata == expected_metadata
return ccresult
@staticmethod
def fake_noise_fun(i, j, l, m):
return m * i + l - j
fake_data = np.array(
[
[[[8, 5, 3, 8, 0], [6, 7, 4, 7, 1]], [[7, 9, 1, 6, 5], [0, 7, 4, 7, 7]]],
[[[2, 4, 5, 7, 0], [1, 7, 0, 5, 4]], [[7, 3, 9, 0, 4], [9, 4, 1, 5, 0]]],
]
)
|