File: viz.py

package info (click to toggle)
nitime 0.9-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,404 kB
  • sloc: python: 10,224; makefile: 110; sh: 34
file content (1361 lines) | stat: -rw-r--r-- 44,513 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
"""Tools for visualization of time-series data.

Depends on matplotlib. Some functions depend also on networkx

"""
from __future__ import print_function

# If you are running nosetests right now, you might want to use 'agg' as a backend:
import sys

# Then do all the rest of it:
import numpy as np
from scipy import fftpack
import matplotlib as mpl
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.colors as colors
from mpl_toolkits.axes_grid1 import make_axes_locatable

from nitime import timeseries as ts
import nitime.utils as tsu
from nitime.utils import threshold_arr, minmax_norm, rescale_arr
import nitime.analysis as nta

# Matplotlib 1.3 has a bug in it, so if that's what you have, we'll replace it
# for you with a fixed version of that module:
import matplotlib
if matplotlib.__version__[:3] == '1.3' or matplotlib.__version__[:3] == '1.4':
    import nitime._mpl_units as mpl_units
    import matplotlib.axis as ax
    ax.munits = mpl_units

from nitime.utils import triu_indices

#Some visualization functions require networkx. Import that if possible:
try:
    import networkx as nx
    #If not, throw an error and get on with business:
except ImportError:
    e_s = "Networkx is not available. Some visualization tools might not work"
    e_s += "\n To download networkx: http://networkx.lanl.gov/"
    print(e_s)
    class NetworkxNotInstalled(object):
        def __getattribute__(self, x):
            raise ImportError(e_s)
    nx = NetworkxNotInstalled()


def plot_tseries(time_series, fig=None, axis=0,
                 xticks=None, xunits=None, yticks=None, yunits=None,
                 xlabel=None, ylabel=None, yerror=None, error_alpha=0.1,
                 time_unit=None, **kwargs):

    """plot a timeseries object

    Arguments
    ---------

    time_series: a nitime time-series object

    fig: a figure handle, opens a new figure if None

    subplot: an axis number (if there are several in the figure to be opened),
        defaults to 0.

    xticks: optional, list, specificies what values to put xticks on. Defaults
    to the matlplotlib-generated.

    yticks: optional, list, specificies what values to put xticks on. Defaults
    to the matlplotlib-generated.

    xlabel: optional, list, specificies what labels to put on xticks

    ylabel: optional, list, specificies what labels to put on yticks

    yerror: optional, UniformTimeSeries with the same sampling_rate and number
    of samples and channels as time_series, the error will be displayed as a
    shading above and below the plotted time-series

    """

    if fig is None:
        fig = plt.figure()

    if not fig.get_axes():
        ax = fig.add_subplot(1, 1, 1)
    else:
        ax = fig.get_axes()[axis]

    #Make sure that time displays on the x axis with the units you want:
    #If you want to change the time-unit on the visualization from that used to
    #represent the time-series:
    if time_unit is not None:
        tu = time_unit
        conv_fac = ts.time_unit_conversion[time_unit]
    #Otherwise, get the information from your input:
    else:
        tu = time_series.time_unit
        conv_fac = time_series.time._conversion_factor

    this_time = time_series.time / float(conv_fac)
    ax.plot(this_time, time_series.data.T, **kwargs)

    if xlabel is None:
        ax.set_xlabel('Time (%s)' % tu)
    else:
        ax.set_xlabel(xlabel)

    if ylabel is not None:
        ax.set_ylabel(ylabel)

    if yerror is not None:
        if len(yerror.data.shape) == 1:
            this_e = yerror.data[np.newaxis, :]
        else:
            this_e = yerror.data
        delta = this_e
        e_u = time_series.data + delta
        e_d = time_series.data - delta
        for i in range(e_u.shape[0]):
            ax.fill_between(this_time, e_d[i], e_u[i], alpha=error_alpha)

    return fig


def matshow_tseries(time_series, fig=None, axis=0, xtick_n=5, time_unit=None,
                    xlabel=None, ylabel=None):

    """Creates an image of the time-series, ordered according to the first
    dimension of the time-series object

    Parameters
    ----------

    time_series: a nitime time-series object

    fig: a figure handle, opens a new figure if None

    axis: an axis number (if there are several in the figure to be opened),
        defaults to 0.

    xtick_n: int, optional, sets the number of ticks to be placed on the x axis
    """

    if fig is None:
        fig = plt.figure()

    if not fig.get_axes():
        ax = fig.add_subplot(1, 1, 1)
    else:
        ax = fig.get_axes()[axis]

    #Make sure that time displays on the x axis with the units you want:
    #If you want to change the time-unit on the visualization from that used to
    #represent the time-series:
    if time_unit is not None:
        tu = time_unit
        conv_fac = ts.time_unit_conversion[time_unit]
    #Otherwise, get the information from your input:
    else:
        tu = time_series.time_unit
        conv_fac = time_series.time._conversion_factor

    this_time = time_series.time / float(conv_fac)
    ax.matshow(time_series.data)

    ax.set_xticks(list(range(len(this_time)))[::len(this_time) / xtick_n])
    ax.set_xticklabels(this_time[::len(this_time) / xtick_n])

    if xlabel is None:
        ax.set_xlabel('Time (%s)' % tu)
    else:
        ax.set_xlabel(xlabel)

    if ylabel is not None:
        ax.set_ylabel(ylabel)

    return fig


## Helper functions for matshow_roi and for drawgraph_roi, in order to get the
## right cmap for the colorbar:

##Currently not used at all - should they be removed?
def rgb_to_dict(value, cmap):
    return dict(zip(('red', 'green', 'blue', 'alpha'), cmap(value)))


def subcolormap(xmin, xmax, cmap):
    '''Returns the part of cmap between xmin, xmax, scaled to 0,1.'''
    assert xmin < xmax
    assert xmax <= 1
    cd = cmap._segmentdata.copy()
    colornames = ('red', 'green', 'blue')
    rgbmin, rgbmax = rgb_to_dict(xmin, cmap), rgb_to_dict(xmax, cmap)
    for k in cd:
        tmp = [x for x in cd[k] if x[0] >= xmin and x[0] <= xmax]
        if tmp == [] or tmp[0][0] > xmin:
            tmp = [(xmin, rgbmin[k], rgbmin[k])] + tmp
        if tmp == [] or tmp[-1][0] < xmax:
            tmp = tmp + [(xmax, rgbmax[k], rgbmax[k])]
        #now scale all this to (0,1)
        square = list(zip(*tmp))
        xbreaks = [(x - xmin) / (xmax - xmin) for x in square[0]]
        square[0] = xbreaks
        tmp = list(zip(*square))
        cd[k] = tmp
    return colors.LinearSegmentedColormap('local', cd, N=256)


def drawmatrix_channels(in_m, channel_names=None, fig=None, x_tick_rot=0,
                        size=None, cmap=plt.cm.RdBu_r, colorbar=True,
                        color_anchor=None, title=None):
    r"""Creates a lower-triangle of the matrix of an nxn set of values. This is
    the typical format to show a symmetrical bivariate quantity (such as
    correlation or coherence between two different ROIs).

    Parameters
    ----------

    in_m: nxn array with values of relationships between two sets of rois or
    channels

    channel_names (optional): list of strings with the labels to be applied to
    the channels in the input. Defaults to '0','1','2', etc.

    fig (optional): a matplotlib figure

    cmap (optional): a matplotlib colormap to be used for displaying the values
    of the connections on the graph

    title (optional): string to title the figure (can be like '$\alpha$')

    color_anchor (optional): determine the mapping from values to colormap
        if None, min and max of colormap correspond to min and max of in_m
        if 0, min and max of colormap correspond to max of abs(in_m)
        if (a,b), min and max of colormap correspond to (a,b)

    Returns
    -------

    fig: a figure object

    """
    N = in_m.shape[0]
    ind = np.arange(N)  # the evenly spaced plot indices

    def channel_formatter(x, pos=None):
        thisind = np.clip(int(x), 0, N - 1)
        return channel_names[thisind]

    if fig is None:
        fig = plt.figure()

    if size is not None:

        fig.set_figwidth(size[0])
        fig.set_figheight(size[1])

    w = fig.get_figwidth()
    h = fig.get_figheight()

    ax_im = fig.add_subplot(1, 1, 1)

    # If you want to draw the colorbar:
    if colorbar:
        divider = make_axes_locatable(ax_im)
        ax_cb = divider.new_vertical(size="10%", pad=0.1, pack_start=True)
        fig.add_axes(ax_cb)

    # Make a copy of the input, so that you don't make changes to the original
    # data provided
    m = in_m.copy()

    # Null the upper triangle, so that you don't get the redundant and the
    # diagonal values:
    idx_null = triu_indices(m.shape[0])
    m[idx_null] = np.nan

    # Extract the minimum and maximum values for scaling of the
    # colormap/colorbar:
    max_val = np.nanmax(m)
    min_val = np.nanmin(m)

    if color_anchor is None:
        color_min = min_val
        color_max = max_val
    elif color_anchor == 0:
        bound = max(abs(max_val), abs(min_val))
        color_min = -bound
        color_max = bound
    else:
        color_min = color_anchor[0]
        color_max = color_anchor[1]

    # The call to imshow produces the matrix plot:
    im = ax_im.imshow(m, origin='upper', interpolation='nearest',
                      vmin=color_min, vmax=color_max, cmap=cmap)

    # Formatting:
    ax = ax_im
    ax.grid(True)
    # Label each of the cells with the row and the column:
    if channel_names is not None:
        for i in range(0, m.shape[0]):
            if i < (m.shape[0] - 1):
                ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot)
            if i > 0:
                ax.text(-1, i + 0.3, channel_names[i],
                        horizontalalignment='right')

        ax.set_axis_off()
        ax.set_xticks(np.arange(N))
        ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter))
        fig.autofmt_xdate(rotation=x_tick_rot)
        ax.set_yticks(np.arange(N))
        ax.set_yticklabels(channel_names)
        ax.set_ybound([-0.5, N - 0.5])
        ax.set_xbound([-0.5, N - 1.5])

    # Make the tick-marks invisible:
    for line in ax.xaxis.get_ticklines():
        line.set_markeredgewidth(0)

    for line in ax.yaxis.get_ticklines():
        line.set_markeredgewidth(0)

    ax.set_axis_off()

    if title is not None:
        ax.set_title(title)

    # The following produces the colorbar and sets the ticks
    if colorbar:
        # Set the ticks - if 0 is in the interval of values, set that, as well
        # as the maximal and minimal values:
        if min_val < 0:
            ticks = [color_min, min_val, 0, max_val, color_max]
        # Otherwise - only set the minimal and maximal value:
        else:
            ticks = [color_min, min_val, max_val, color_max]

        # This makes the colorbar:
        cb = fig.colorbar(im, cax=ax_cb, orientation='horizontal',
                          cmap=cmap,
                          norm=im.norm,
                          boundaries=np.linspace(color_min, color_max, 256),
                          ticks=ticks,
                          format='%.2f')

    # Set the current figure active axis to be the top-one, which is the one
    # most likely to be operated on by users later on
    fig.sca(ax)

    return fig


def drawgraph_channels(in_m, channel_names=None, cmap=plt.cm.RdBu_r,
                       node_shapes=None, node_colors=None,
                       title=None, layout=None, threshold=None):

    """Draw a graph based on the matrix specified in in_m. Wrapper to
    draw_graph.

    Parameters
    ----------

    in_m: nxn array with values of relationships between two sets of channels
    or channels

    channel_names (optional): list of strings with the labels to be applied to
    the channels in the input. Defaults to '0','1','2', etc.

    cmap (optional): a matplotlib colormap to be used for displaying the values
    of the connections on the graph

    node_shapes: defaults to circle

    node_colors: defaults to white,

    title: str
        Sets a title for the figure.

    layout, defaults to nx.circular_layout
    Returns
    -------
    fig: a figure object

    Notes
    -----

    The layout of the graph is done using functions from networkx
    (http://networkx.lanl.gov), which is a dependency of this function
    """
    nnodes = in_m.shape[0]
    if channel_names is None:
        node_labels = None  # [None]*nnodes
    else:
        node_labels = list(channel_names)

    if node_shapes is None:
        node_shapes = ['o'] * nnodes

    if node_colors is None:
        node_colors = ['w'] * nnodes

    # Make a copy, avoiding making changes to the original data:
    m = in_m.copy()

    # Set the diagonal values to the minimal value of the matrix, so that the
    # vrange doesn't always get stretched to 1:
    m[np.arange(nnodes), np.arange(nnodes)] = min(np.nanmin(m), -np.nanmax(m))
    range_setter = max(abs(np.nanmin(m)), abs(np.nanmax(m)))
    vrange = [-range_setter, range_setter]

    if threshold is None:
        #If there happens to be an off-diagnoal edge in the adjacency matrix
        #which is just as small as the minimum, we don't want to drop that one:
        eps = 10 ** -10
        G = mkgraph(m, threshold=vrange[0] - eps, threshold2=None)
    else:
        G = mkgraph(m, threshold=threshold[0], threshold2=threshold[1])
    fig = draw_graph(G,
                     node_colors=node_colors,
                     node_shapes=node_shapes,
                     node_scale=2,
                     labels=node_labels,
                     edge_cmap=cmap,
                     colorbar=True,
                     vrange=vrange,
                     title=title,
                     stretch_factor=1,
                     edge_alpha=False,
                     layout=layout
                     )
    return fig


def plot_xcorr(xc, ij, fig=None, line_labels=None, xticks=None, yticks=None,
               xlabel=None, ylabel=None):
    """ Visualize the cross-correlation function"""

    if fig is None:
        fig = plt.figure()

    if not fig.get_axes():
        ax = fig.add_subplot(1, 1, 1)
    else:
        ax = fig.get_axes()[0]

    if line_labels is not None:
        #Reverse the order, so that pop() works:
        line_labels.reverse()
        this_labels = line_labels

    #Use the ij input as the labels:
    else:
        this_labels = [str(this) for this in ij].reverse()

    #Make sure that time displays on the x axis with the units you want:
    conv_fac = xc.time._conversion_factor
    this_time = xc.time / float(conv_fac)

    for (i, j) in ij:
        if this_labels is not None:
            #Use pop() to get the first one and remove it:
            ax.plot(this_time, xc.data[i, j].squeeze(),
                    label=this_labels.pop())
        else:
            ax.plot(this_time, xc.data[i, j].squeeze())

    ax.set_xlabel('Time(sec)')
    ax.set_ylabel('Correlation(normalized)')

    if xlabel is None:
        #Make sure that time displays on the x axis with the units you want:
        conv_fac = xc.time._conversion_factor
        time_label = xc.time / float(conv_fac)
        ax.set_xlabel('Time (%s)' % xc.time_unit)
    else:
        time_label = xlabel
        ax.set_xlabel(xlabel)

    if line_labels is not None:
        plt.legend()

    if ylabel is None:
        ax.set_ylabel('Correlation')
    else:
        ax.set_ylabel(ylabel)

    return fig


#-----------------------------------------------------------------------------
# Functions from brainx:
#-----------------------------------------------------------------------------
def draw_matrix(mat, th1=None, th2=None, clim=None, cmap=None):
    """Draw a matrix, optionally thresholding it.
    """
    if th1 is not None:
        m2 = tsu.thresholded_arr(mat, th1, th2)
    else:
        m2 = mat
    ax = plt.matshow(m2, cmap=cmap)
    if clim is not None:
        ax.set_clim(*clim)
    plt.colorbar()
    return ax


def draw_arrows(G, pos, edgelist=None, ax=None, edge_color='k', alpha=1.0,
                width=1):
    """Draw arrows on a set of edges"""

    if ax is None:
        ax = plt.gca()

    if edgelist is None:
        edgelist = G.edges()

    if not edgelist or len(edgelist) == 0:  # no edges!
        return

    # set edge positions
    edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])

    arrow_colors = (colors.colorConverter.to_rgba('k', alpha), )
    a_pos = []

    # Radius of the nodes in world coordinates
    radius = 0.5
    head_length = 0.31
    overhang = 0.1

    #ipvars('edge_pos')  # dbg

    for src, dst in edge_pos:
        dd = dst - src
        nd = np.linalg.norm(dd)
        if nd == 0:  # source and target at same position
            continue

        s = 1.0 - radius / nd
        dd *= s
        x1, y1 = src
        dx, dy = dd
        ax.arrow(x1, y1,
                 dx, dy,
                 lw=width, width=width,
                 head_length=head_length,
                 fc=edge_color, ec='none',
                 alpha=alpha, overhang=overhang)


def draw_graph(G,
               labels=None,
               node_colors=None,
               node_shapes=None,
               node_scale=1.0,
               edge_style='solid',
               edge_cmap=None,
               colorbar=False,
               vrange=None,
               layout=None,
               title=None,
               font_family='sans-serif',
               font_size=9,
               stretch_factor=1.0,
               edge_alpha=True,
               fig_size=None):
    """Draw a weighted graph with options to visualize link weights.

    The resulting diagram uses the rank of each node as its size, and the
    weight of each link (after discarding thresholded values, see below) as the
    link opacity.

    It maps edge weight to color as well as line opacity and thickness,
    allowing the color part to be hardcoded over a value range (to permit valid
    cross-figure comparisons for different graphs, so the same color
    corresponds to the same link weight even if each graph has a different
    range of weights).  The nodes sizes are proportional to their degree,
    computed as the sum of the weights of all their links.  The layout defaults
    to circular, but any nx layout function can be passed in, as well as a
    statically precomputed layout.

    Parameters
    ----------
    G : weighted graph
      The values must be of the form (v1,v2), with all v2 in [0,1].  v1 are
      used for colors, v2 for thickness/opacity.

    labels : list or dict, optional.
      An indexable object that maps nodes to strings.  If not given, the
      string form of each node is used as a label.  If False, no labels are
      drawn.

    node_colors : list or dict, optional.
      An indexable object that maps nodes to valid matplotlib color specs.  See
      matplotlib's plot() function for details.

    node_shapes : list or dict, optional.
      An indexable object that maps nodes to valid matplotlib shape specs.  See
      matplotlib's scatter() function for details.  If not given, circles are
      used.

    node_scale : float, optional
      A scale factor to globally stretch or shrink all nodes symbols by.

    edge_style : string, optional
      Line style for the edges, defaults to 'solid'.

    edge_cmap : matplotlib colormap, optional.
      A callable that returns valid color specs, like matplotlib colormaps.
      If not given, edges are colored black.

    colorbar : bool
      If true, automatically add a colorbar showing the mapping of graph weight
      values to colors.

    vrange : pair of floats
      If given, this indicates the total range of values that the weights can
      in principle occupy, and is used to set the lower/upper range of the
      colormap.  This allows you to set the range of multiple different figures
      to the same values, even if each individual graph has range variations,
      so that visual color comparisons across figures are valid.

    layout : function or layout dict, optional
      A NetworkX-like layout function or the result of a precomputed layout for
      the given graph.  NetworkX produces layouts as dicts keyed by nodes and
      with (x,y) pairs of coordinates as values, any function that produces
      this kind of output is acceptable.  Defaults to nx.circular_layout.

    title : string, optional.
      If given, title to put on the main plot.

    font_family : string, optional.
      Font family used for the node labels and title.

    font_size : int, optional.
      Font size used for the node labels and title.

    stretch_factor : float, optional
      A global scaling factor to make the graph larger (or smaller if <1).
      This can be used to separate the nodes if they start overlapping.

    edge_alpha: bool, optional
      Whether to weight the transparency of each edge by a factor equivalent to
      its relative weight

    fig_size: list of height by width, the size of the figure (in
    inches). Defaults to [6,6]

    Returns
    -------
    fig
      The matplotlib figure object with the plot.
    """
    if fig_size is None:
        figsize = [6, 6]

    scaler = figsize[0] / 6.
    # For the size of the node symbols
    node_size_base = 1000 * scaler
    node_min_size = 200 * scaler
    default_node_shape = 'o'
    # Default colors if none given
    default_node_color = 'r'
    default_edge_color = 'k'
    # Max edge width
    max_width = 13 * scaler
    min_width = 2 * scaler
    font_family = 'sans-serif'

    # We'll use the nodes a lot, let's make a numpy array of them
    nodes = np.array(sorted(G.nodes()))
    nnod = len(nodes)

    # Build a 'weighted degree' array obtained by adding the (absolute value)
    # of the weights for all edges pointing to each node:
    amat = nx.adj_matrix(G).A  # get a normal array out of it
    degarr = abs(amat).sum(0)  # weights are sums across rows

    # Map the degree to the 0-1 range so we can use it for sizing the nodes.
    try:
        odegree = rescale_arr(degarr, 0, 1)
        # Make an array of node sizes based on node degree
        node_sizes = odegree * node_size_base + node_min_size
    except ZeroDivisionError:
        # All nodes same size
        node_sizes = np.empty(nnod, float)
        node_sizes.fill(0.5 * node_size_base + node_min_size)

    # Adjust node size list.  We square the scale factor because in mpl, node
    # sizes represent area, not linear size, but it's more intuitive for the
    # user to think of linear factors (the overall figure scale factor is also
    # linear).
    node_sizes *= node_scale ** 2

    # Set default node properties
    if node_colors is None:
        node_colors = [default_node_color] * nnod

    if node_shapes is None:
        node_shapes = [default_node_shape] * nnod

    # Set default edge colormap
    if edge_cmap is None:
        # Make an object with the colormap API, that maps all input values to
        # the default color (with proper alhpa)
        edge_cmap = (lambda val, alpha:
                     colors.colorConverter.to_rgba(default_edge_color, alpha))

    # if vrange is None, we set the color range from the values, else the user
    # can specify it

    # e[2] is edge value: edges_iter returns (i,j,data)
    gvals = np.array([e[2]['weight'] for e in G.edges(data=True)])
    gvmin, gvmax = gvals.min(), gvals.max()
    gvrange = gvmax - gvmin
    if vrange is None:
        vrange = gvmin, gvmax
    # Now, construct the normalization for the colormap
    cnorm = mpl.colors.Normalize(vmin=vrange[0], vmax=vrange[1])

    # Create the actual plot where the graph will be displayed
    figsize = np.array(figsize, float)
    figsize *= stretch_factor

    fig = plt.figure(figsize=figsize)
    ax_graph = fig.add_subplot(1, 1, 1)
    fig.sca(ax_graph)

    if layout is None:
        layout = nx.circular_layout
    # Compute positions for all nodes - nx has several algorithms
    if callable(layout):
        pos = layout(G)
    else:
        # The user can also provide a precomputed layout
        pos = layout

    # Draw nodes
    for nod in nodes:
        nx.draw_networkx_nodes(G,
                               pos,
                               nodelist=[nod],
                               node_color=node_colors[nod],
                               node_shape=node_shapes[nod],
                               node_size=node_sizes[nod],
                               edgecolors='k')
    # Draw edges
    if not isinstance(G, nx.DiGraph):
        # Undirected graph, simple lines for edges
        # We need the size of the value range to properly scale colors
        vsize = vrange[1] - vrange[0]
        gvals_normalized = G.metadata['vals_norm']
        for (u, v, y) in G.edges(data=True):
            # The graph value is the weight, and the normalized values are in
            # [0,1], used for thickness/transparency
            alpha = gvals_normalized[u, v]
            # Scale the color choice to the specified vrange, so that
            ecol = (y['weight'] - vrange[0]) / vsize
            #print 'u,v:',u,v,'y:',y,'ecol:',ecol  # dbg

            if edge_alpha:
                fade = alpha
            else:
                fade = 1.0

            edge_color = [tuple(edge_cmap(ecol, fade))]
            #dbg:
            #print u,v,y
            nx.draw_networkx_edges(G,
                                   pos,
                                   edgelist=[(u, v)],
                                   width=min_width + alpha * max_width,
                                   edge_color=edge_color,
                                   style=edge_style)
    else:
        # Directed graph, use arrows.
        # XXX - this is currently broken.
        raise NotImplementedError("arrow drawing currently broken")

        ## for (u,v,x) in G.edges(data=True):
        ##     y,w = x
        ##     draw_arrows(G,pos,edgelist=[(u,v)],
        ##                 edge_color=[w],
        ##                 alpha=w,
        ##                 edge_cmap=edge_cmap,
        ##                 width=w*max_width)

    # Draw labels.  If not given, we use the string form of the nodes.  If
    # labels is False, no labels are drawn.
    if labels is None:
        labels = map(str, nodes)

    if labels:
        lab_idx = list(range(len(labels)))
        labels_dict = dict(zip(lab_idx, labels))
        nx.draw_networkx_labels(G,
                                pos,
                                labels_dict,
                                font_size=font_size,
                                font_family=font_family)

    if title:
        plt.title(title, fontsize=font_size)

    # Turn off x and y axes labels in pylab
    plt.xticks([])
    plt.yticks([])

    # Add a colorbar if requested
    if colorbar:
        divider = make_axes_locatable(ax_graph)
        ax_cb = divider.new_vertical(size="20%", pad=0.2, pack_start=True)
        fig.add_axes(ax_cb)
        cb = mpl.colorbar.ColorbarBase(ax_cb,
                                    cmap=edge_cmap,
                                    norm=cnorm,
                                    #boundaries = np.linspace(min((gvmin,0)),
                                    #                         max((gvmax,0)),
                                    #                         256),
                                    orientation='horizontal',
                                    format='%.2f')

    # Always return the MPL figure object so the user can further manipulate it
    return fig


def lab2node(labels, labels_dict):
    return [labels_dict[ll] for ll in labels]


def mkgraph(cmat, threshold=0.0, threshold2=None):
    """Make a weighted graph object out of an adjacency matrix.

    The values in the original matrix cmat can be thresholded out.  If only one
    threshold is given, all values below that are omitted when creating edges.
    If two thresholds are given, then values in the th2-th1 range are
    omitted.  This allows for the easy creation of weighted graphs with
    positive and negative values where a range of weights around 0 is omitted.

    Parameters
    ----------
    cmat : 2-d square array
      Adjacency matrix.
    threshold : float
      First threshold.
    threshold2 : float
      Second threshold.

    Returns
    -------
    G : a NetworkX weighted graph object, to which a dictionary called
    G.metadata is appended.  This dict contains the original adjacency matrix
    cmat, the two thresholds, and the weights
    """

    # Input sanity check
    nrow, ncol = cmat.shape
    if nrow != ncol:
        raise ValueError("Adjacency matrix must be square")

    row_idx, col_idx, vals = threshold_arr(cmat, threshold, threshold2)
    # Also make the full thresholded array available in the metadata
    cmat_th = np.empty_like(cmat)
    if threshold2 is None:
        cmat_th.fill(threshold)
    else:
        cmat_th.fill(-np.inf)
    cmat_th[row_idx, col_idx] = vals

    # Next, make a normalized copy of the values.  For the 2-threshold case, we
    # use 'folding' normalization
    if threshold2 is None:
        vals_norm = minmax_norm(vals)
    else:
        vals_norm = minmax_norm(vals, 'folding', [threshold, threshold2])

    # Now make the actual graph
    G = nx.Graph(weighted=True)
    G.add_nodes_from(list(range(nrow)))
    # To keep the weights of the graph to simple values, we store the
    # normalize ones in a separate dict that we'll stuff into the graph
    # metadata.

    normed_values = {}
    for i, j, val, nval in zip(row_idx, col_idx, vals, vals_norm):
        if i == j:
            # no self-loops
            continue
        G.add_edge(i, j, weight=val)
        normed_values[i, j] = nval

    # Write a metadata dict into the graph and save the threshold info there
    G.metadata = dict(threshold1=threshold,
                      threshold2=threshold2,
                      cmat_raw=cmat,
                      cmat_th=cmat_th,
                      vals_norm=normed_values,
                      )
    return G


def plot_snr(tseries, lb=0, ub=None, fig=None):
    """
    Show the coherence, snr and information of an SNRAnalyzer

    Parameters
    ----------
    tseries: nitime TimeSeries object
       Multi-trial data in response to one stimulus/protocol with the dims:
       (n_channels,n_repetitions,time)

    lb,ub: float
       Lower and upper bounds on the frequency range over which to
       calculate (default to [0,Nyquist]).

    Returns
    -------

    A tuple containing:

    fig: a matplotlib figure object
        This figure displays:
        1. Coherence
        2. SNR
        3. Information
    """

    if fig is None:
        fig = plt.figure()

    ax_spectra = fig.add_subplot(1, 2, 1)
    ax_snr_info = fig.add_subplot(1, 2, 2)

    A = []
    info = []
    s_n_r = []
    coh = []
    noise_spectra = []
    signal_spectra = []
    #If you only have one channel, make sure that everything still works by
    #adding an axis
    if len(tseries.data.shape) < 3:
        this = tseries.data[np.newaxis, :, :]
    else:
        this = tseries.data

    for i in range(this.shape[0]):
        A.append(nta.SNRAnalyzer(ts.TimeSeries(this[i],
                                    sampling_rate=tseries.sampling_rate)))
        info.append(A[-1].mt_information)
        s_n_r.append(A[-1].mt_snr)
        coh.append(A[-1].mt_coherence)
        noise_spectra.append(A[-1].mt_noise_psd)
        signal_spectra.append(A[-1].mt_signal_psd)

    freqs = A[-1].mt_frequencies

    lb_idx, ub_idx = tsu.get_bounds(freqs, lb, ub)
    freqs = freqs[lb_idx:ub_idx]

    coh_mean = np.mean(coh, 0)
    snr_mean = np.mean(s_n_r, 0)
    info_mean = np.mean(info, 0)
    n_spec_mean = np.mean(noise_spectra, 0)
    s_spec_mean = np.mean(signal_spectra, 0)

    ax_spectra.plot(freqs, np.log(s_spec_mean[lb_idx:ub_idx]), label='Signal')
    ax_spectra.plot(freqs, np.log(n_spec_mean[lb_idx:ub_idx]), label='Noise')
    ax_spectra.set_xlabel('Frequency (Hz)')
    ax_spectra.set_ylabel('Spectral power (dB)')

    ax_snr_info.plot(freqs, snr_mean[lb_idx:ub_idx], label='SNR')
    ax_snr_info.plot(np.nan, np.nan, 'r', label='Info')
    ax_snr_info.set_ylabel('SNR')
    ax_snr_info.set_xlabel('Frequency (Hz)')
    ax_info = ax_snr_info.twinx()
    ax_info.plot(freqs, np.cumsum(info_mean[lb_idx:ub_idx]), 'r')
    ax_info.set_ylabel('Cumulative information rate (bits/sec)')
    return fig


def plot_snr_diff(tseries1, tseries2, lb=0, ub=None, fig=None,
                  ts_names=['1', '2'],
                  bandwidth=None, adaptive=False, low_bias=True):

    """
    Show distributions of differences between two time-series in the
    amount of snr (freq band by freq band) and information. For example,
    for comparing two stimulus conditions

    Parameters
    ----------
    tseries1, tseries2 : nitime TimeSeries objects
       These are the time-series to compare, with each of them having the
       dims: (n_channels, n_reps, time), where n_channels1 = n_channels2

    lb,ub: float
       Lower and upper bounds on the frequency range over which to
       calculate the information rate (default to [0,Nyquist]).

    fig: matplotlib figure object
       If you want to do this on already existing figure. Otherwise, a new
       figure object will be generated.

    ts_names: list of str
       Labels for the two inputs, to be used in plotting (defaults to
       ['1','2'])

    bandwidth, adaptive, low_bias: See :func:`nta.SNRAnalyzer` for details


    Returns
    -------

    A tuple containing:

    fig: a matplotlib figure object
        This figure displays:
        1. The histogram of the information differences between the two
        time-series
        2. The frequency-dependent SNR for the two time-series

    info1, info2: float arrays
        The frequency-dependent information rates (in bits/sec)

    s_n_r1, s_n_r2: float arrays
         The frequncy-dependent signal-to-noise ratios

    """
    if fig is None:
        fig = plt.figure()
    ax_scatter = fig.add_subplot(1, 2, 1)
    ax_snr = fig.add_subplot(1, 2, 2)

    SNR1 = []
    s_n_r1 = []
    info1 = []
    SNR2 = []
    info2 = []
    s_n_r2 = []

    #If you only have one channel, make sure that everything still works by
    #adding an axis
    if len(tseries1.data.shape) < 3:
        this1 = tseries1.data[np.newaxis, :, :]
        this2 = tseries2.data[np.newaxis, :, :]
    else:
        this1 = tseries1.data
        this2 = tseries2.data

    for i in range(this1.shape[0]):
        SNR1.append(nta.SNRAnalyzer(ts.TimeSeries(this1[i],
                                    sampling_rate=tseries1.sampling_rate),
                                bandwidth=bandwidth,
                                adaptive=adaptive,
                                low_bias=low_bias))
        info1.append(SNR1[-1].mt_information)
        s_n_r1.append(SNR1[-1].mt_snr)

        SNR2.append(nta.SNRAnalyzer(ts.TimeSeries(this2[i],
                                    sampling_rate=tseries2.sampling_rate),
                                bandwidth=bandwidth,
                                adaptive=adaptive,
                                low_bias=low_bias))

        info2.append(SNR2[-1].mt_information)
        s_n_r2.append(SNR2[-1].mt_snr)

    freqs = SNR1[-1].mt_frequencies

    lb_idx, ub_idx = tsu.get_bounds(freqs, lb, ub)
    freqs = freqs[lb_idx:ub_idx]

    info1 = np.array(info1)
    info_sum1 = np.sum(info1[:, lb_idx:ub_idx], -1)
    info2 = np.array(info2)
    info_sum2 = np.sum(info2[:, lb_idx:ub_idx], -1)

    ax_scatter.scatter(info_sum1, info_sum2)
    ax_scatter.errorbar(np.mean(info_sum1), np.mean(info_sum2),
                 yerr=np.std(info_sum2),
                 xerr=np.std(info_sum1))

    plot_min = min(min(info_sum1), min(info_sum2))
    plot_max = max(max(info_sum1), max(info_sum2))
    ax_scatter.plot([plot_min, plot_max], [plot_min, plot_max], 'k--')
    ax_scatter.set_xlabel('Information %s (bits/sec)' % ts_names[0])
    ax_scatter.set_ylabel('Information %s (bits/sec)' % ts_names[1])

    snr_mean1 = np.mean(s_n_r1, 0)
    snr_mean2 = np.mean(s_n_r2, 0)

    ax_snr.plot(freqs, snr_mean1[lb_idx:ub_idx], label=ts_names[0])
    ax_snr.plot(freqs, snr_mean2[lb_idx:ub_idx], label=ts_names[1])
    ax_snr.legend()
    ax_snr.set_xlabel('Frequency (Hz)')
    ax_snr.set_ylabel('SNR')

    return fig, info1, info2, s_n_r1, s_n_r2


def plot_corr_diff(tseries1, tseries2, fig=None,
                  ts_names=['1', '2']):
    """
    Show the differences in *Fischer-transformed* snr correlations for two
    time-series

    Parameters
    ----------
    tseries1, tseries2 : nitime TimeSeries objects
       These are the time-series to compare, with each of them having the
       dims: (n_channels, n_reps, time), where n_channels1 = n_channels2

    lb,ub: float
       Lower and upper bounds on the frequency range over which to
       calculate the information rate (default to [0,Nyquist]).

    fig: matplotlib figure object
       If you want to do this on already existing figure. Otherwise, a new
       figure object will be generated.

    ts_names: list of str
       Labels for the two inputs, to be used in plotting (defaults to
       ['1','2'])

    bandwidth, adaptive, low_bias: See :func:`SNRAnalyzer` for details


    Returns
    -------

    fig: a matplotlib figure object
    """

    if fig is None:
        fig = plt.figure()

    ax = fig.add_subplot(1, 1, 1)

    SNR1 = []
    SNR2 = []
    corr1 = []
    corr2 = []
    corr_e1 = []
    corr_e2 = []

    for i in range(tseries1.shape[0]):
        SNR1.append(nta.SNRAnalyzer(ts.TimeSeries(tseries1.data[i],
                                    sampling_rate=tseries1.sampling_rate)))

        corr1.append(np.arctanh(np.abs(SNR1[-1].correlation[0])))
        corr_e1.append(SNR1[-1].correlation[1])

        SNR2.append(nta.SNRAnalyzer(ts.TimeSeries(tseries2.data[i],
                                    sampling_rate=tseries2.sampling_rate)))

        corr2.append(np.arctanh(np.abs(SNR2[-1].correlation[0])))
        corr_e2.append(SNR1[-1].correlation[1])

    ax.scatter(np.array(corr1), np.array(corr2))
    ax.errorbar(np.mean(corr1), np.mean(corr2),
                 yerr=np.std(corr2),
                 xerr=np.std(corr1))
    plot_min = min(min(corr1), min(corr2))
    plot_max = max(max(corr1), max(corr2))
    ax.plot([plot_min, plot_max], [plot_min, plot_max], 'k--')
    ax.set_xlabel('Correlation (Fischer Z) %s' % ts_names[0])
    ax.set_ylabel('Correlation (Fischer Z) %s' % ts_names[1])

    return fig, corr1, corr2


def winspect(win, f, name=None):
    """
    Inspect a window by showing it and its spectrum

    Utility file used in building the documentation
    """
    npts = len(win)
    ax1, ax2 = f.add_subplot(1, 2, 1), f.add_subplot(1, 2, 2)
    ax1.plot(win)
    ax1.set_xlabel('Time')
    ax1.set_ylabel('Window amplitude')
    ax1.set_ylim(-0.1, 1.1)
    ax1.set_xlim(0, npts)
    wf = fftpack.fft(win)
    ax1.set_xticks(np.arange(npts / 8., npts, npts / 8.))
    toplot = np.abs(fftpack.fftshift(wf).real)
    toplot /= np.max(toplot)
    toplot = np.log(toplot)
    ax2.plot(toplot, label=name)
    ax2.set_xlim(0, npts)
    ax2.set_xticks(np.arange(npts / 8., npts, npts / 8.))
    ax2.set_xticklabels(np.arange((-1 / 2. + 1 / 8.), 1 / 2., 1 / 8.))
    ax2.set_xlabel('Relative frequency')
    ax2.set_ylabel('Relative attenuation (log scale)')
    ax2.grid()
    ax2.legend(loc=4)
    f.set_size_inches([10, 6])


def plot_spectral_estimate(f, sdf, sdf_ests, limits=None, elabels=()):
    """
    Plot an estimate of a spectral transform against the ground truth.

    Utility file used in building the documentation
    """
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax_limits = (sdf.min() - 2*np.abs(sdf.min()),
                 sdf.max() + 1.25*np.abs(sdf.max()))
    ax.plot(f, sdf, 'c', label='True S(f)')

    if not elabels:
        elabels = ('',) * len(sdf_ests)
    colors = 'bgkmy'
    for e, l, c in zip(sdf_ests, elabels, colors):
        ax.plot(f, e, color=c, linewidth=2, label=l)

    if limits is not None:
        ax.fill_between(f, limits[0], y2=limits[1], color=(1, 0, 0, .3),
                        alpha=0.5)

    ax.set_ylim(ax_limits)
    ax.legend()
    return fig


# Patch in a fix to networkx's draw_networkx_nodes
# This function is broken in version 1.11, and the fix is a one-line change:
# and is the addition of the `**kwds` into the call to `ax.scatter` below.
# Without this addition, `scatter` defaults to plot the points with the edge
# color set to be the same as the face color, which caused our issue #153

def draw_networkx_nodes(G, pos,
                        nodelist=None,
                        node_size=300,
                        node_color='r',
                        node_shape='o',
                        alpha=1.0,
                        cmap=None,
                        vmin=None,
                        vmax=None,
                        ax=None,
                        linewidths=None,
                        label=None,
                        **kwds):
    """Draw the nodes of the graph G.

    This draws only the nodes of the graph G.

    Parameters
    ----------
    G : graph
       A networkx graph

    pos : dictionary
       A dictionary with nodes as keys and positions as values.
       Positions should be sequences of length 2.

    ax : Matplotlib Axes object, optional
       Draw the graph in the specified Matplotlib axes.

    nodelist : list, optional
       Draw only specified nodes (default G.nodes())

    node_size : scalar or array
       Size of nodes (default=300).  If an array is specified it must be the
       same length as nodelist.

    node_color : color string, or array of floats
       Node color. Can be a single color format string (default='r'),
       or a  sequence of colors with the same length as nodelist.
       If numeric values are specified they will be mapped to
       colors using the cmap and vmin,vmax parameters.  See
       matplotlib.scatter for more details.

    node_shape :  string
       The shape of the node.  Specification is as matplotlib.scatter
       marker, one of 'so^>v<dph8' (default='o').

    alpha : float
       The node transparency (default=1.0)

    cmap : Matplotlib colormap
       Colormap for mapping intensities of nodes (default=None)

    vmin,vmax : floats
       Minimum and maximum for node colormap scaling (default=None)

    linewidths : [None | scalar | sequence]
       Line width of symbol border (default =1.0)

    label : [None| string]
       Label for legend

    Returns
    -------
    matplotlib.collections.PathCollection
        `PathCollection` of the nodes.

    Examples
    --------
    >>> G=nx.dodecahedral_graph()
    >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G))

    Also see the NetworkX drawing examples at
    http://networkx.github.io/documentation/latest/gallery.html

    See Also
    --------
    draw()
    draw_networkx()
    draw_networkx_edges()
    draw_networkx_labels()
    draw_networkx_edge_labels()
    """
    try:
        import matplotlib.pyplot as plt
        import numpy
    except ImportError:
        raise ImportError("Matplotlib required for draw()")
    except RuntimeError:
        print("Matplotlib unable to open display")
        raise

    if ax is None:
        ax = plt.gca()

    if nodelist is None:
        nodelist = G.nodes()

    if not nodelist or len(nodelist) == 0:  # empty nodelist, no drawing
        return None

    try:
        xy = numpy.asarray([pos[v] for v in nodelist])
    except KeyError as e:
        raise nx.NetworkXError('Node %s has no position.'%e)
    except ValueError:
        raise nx.NetworkXError('Bad value in node positions.')

    node_collection = ax.scatter(xy[:, 0], xy[:, 1],
                                 s=node_size,
                                 c=node_color,
                                 marker=node_shape,
                                 cmap=cmap,
                                 vmin=vmin,
                                 vmax=vmax,
                                 alpha=alpha,
                                 linewidths=linewidths,
                                 label=label,
                                 **kwds)

    node_collection.set_zorder(2)
    return node_collection