1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef FALSE
#define FALSE 0
#define TRUE (!FALSE)
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef M_PI_2
#define M_PI_2 (M_PI/2)
#endif
/* typedefs */
typedef struct {
unsigned int left : 1;
unsigned int right : 1;
unsigned int top : 1;
unsigned int bottom : 1;
} hits_field;
struct noeud {
double l1,l2,l3;
struct noeud *v1,*v2,*v3;
char *nom;
} **tabtax;
typedef struct { /* une branche definie par ses deux extremites */
struct noeud *bouta;
struct noeud *boutb;
char *br_label;
} branche_noeud;
typedef struct _cp_point {
double x, y, r, angle;
} cp_point;
typedef struct _branche {
cp_point debut, fin;
int color;
char *nom;
} branche;
typedef struct _bignoeud {
struct _bignoeud *v1, *v2, *v3;
double l1, l2, l3;
cp_point position;
char *nom;
} bignoeud;
typedef struct _plot_data {
int x, y, w, h;
int ps_plot;
int lstyle, lcol, lsize;
int comp_phys_bounds;
} plot_data;
typedef enum { NO_HIT, LEFT_HIT, RIGHT_HIT, TOP_HIT, BOTTOM_HIT } hit;
#define s_noeud sizeof(struct noeud)
char *preptree(char *fname);
void make_binary_or_unrooted(char *arbre);
int make_binary(char *arbre, char *debut, char *fin, int go_down);
void loadphylip(char *arbre);
struct noeud *unrootedset(char *arbre, char *deb, char *fin, branche_noeud **p_int_br);
char *nextpar(char *text, char *pospar);
void free_tree(void);
double tree_bal(struct noeud *centre, struct noeud *p1, struct noeud *p2);
void get_next_br(struct noeud *pere, struct noeud *fils,
double **abdown, double **abup, struct noeud **f1, struct noeud **f2);
void place_midpoint_root(void);
void parcourir_branches(struct noeud *centre, struct noeud *origine);
void process_branche(struct noeud *cote1, struct noeud *cote2, double length);
double get_length_down(struct noeud *pere, struct noeud *racine);
double arrondi_echelle(double x);
double calc_echelle(int larg);
int myrint(double val);
bignoeud *cre_new_tree(struct noeud *debut, struct noeud *parent,
bignoeud *bigparent);
void remove_big_root(bignoeud *bigracine);
double calc_dist_centre_feuilles(bignoeud *debut, bignoeud *parent);
double proc_null_neg_branches(bignoeud *debut, bignoeud *parent);
int set_angles_noeuds(bignoeud *debut, bignoeud *parent, double delta,
double *p_current_angle, double rayon);
void calc_cartesienne( cp_point *p);
void calc_polaire( cp_point *p);
cp_point calc_point_direction( cp_point *depart, cp_point *direction,
double longueur);
branche *calc_position_noeuds(bignoeud *debut, bignoeud *parent,
branche *curr_branche);
void mem_line(cp_point *debut, cp_point *fin, bignoeud *noeud_term,
branche *br);
void draw_tree(plot_data *ob, branche *branches, int comp_phys_bounds);
int chg_phys(plot_data *ob, hits_field hits, int char_height);
void log_to_phys(cp_point *log_pos, cp_point *phys_pos);
double length_log_phys(double p);
double length_phys_log(double p);
/* external functions */
char *check_alloc(int nbrelt, int sizelt);
void err_message(char *text);
hit draw_line(branche *br, plot_data *ob, int doit, int char_width,
int char_height, int descend, int ascent);
int my_get_char_height(int *ascend, int *descend);
int my_get_string_width(char *nom);
void draw_scale(plot_data *ob, int char_height, int ascent);
/* globals */
struct noeud *racine;
double root_br_l;
int has_br_length = 0, notu, totbranches,
num_noeud, rooted, nextotu;
static branche_noeud *branches;
/* variables globales pour memoriser la meilleure branche:
celle qui partage l'arbre en 2 parties les plus egales possibles en prof moyenne
*/
static double current_best_diff, current_br_length, current_balance;
static struct noeud *current_cote1=NULL, *current_cote2=NULL;
/* externals */
extern int phys_min_x, phys_min_y, phys_max_x, phys_max_y;
extern double log_min_x, log_min_y, log_max_x, log_max_y, mini_br_length;
char *preptree(char *fname)
{
int i, c, v, steparbre, maxarbre;
FILE *njfile;
char *arbre, *der_arbre, *finarbre, *tmp;
if( (njfile=fopen(fname,"r")) == NULL )return ("Tree file not found.");
/* recherche du debut de la description de l'arbre */
do c=fgetc(njfile);
while (c == '\n' || c == '\r' || c == ' ' );
/* for fastDNAml format, skip initial [comment] */
if(c == '[') {
do c=fgetc(njfile); while (c != ']');
do c=fgetc(njfile); while (c == '\n' || c == '\r' || c == ' ' );
}
if ( c != '(') goto erreur;
/* lecture de l'arbre par paquets de steparbre caracteres*/
steparbre=1000;
maxarbre=steparbre;
arbre=check_alloc(maxarbre,1);
der_arbre = arbre+maxarbre;
*arbre=c;
notu=2; i=3; v = 0;
finarbre=arbre;
while( (c=fgetc(njfile)) != EOF && c != ';') {
if( /* c==' ' || */ c=='\n' || c=='\r') continue;
if(++finarbre >= der_arbre-2) {
maxarbre += steparbre;
tmp=check_alloc(maxarbre,1);
memcpy(tmp,arbre,finarbre-arbre);
finarbre=tmp+(finarbre-arbre);
free(arbre);
arbre=tmp;
der_arbre=arbre+maxarbre;
}
*(finarbre)=c;
if(c==')')notu++;
if(c=='(')i++;
if(c == ',') v++;
}
*(finarbre+1)='\0';
fclose(njfile);
if(i!=notu)goto erreur;
arbre = (char *)realloc(arbre, strlen(arbre) + 4 * v + 5 ); /* worst case add 4 chars for each , */
make_binary_or_unrooted(arbre);
/* notu--; */
notu = v ; /* after this notu = number of OTUs - 1 */
totbranches= -1;
/* allocate all memory */
tabtax = (struct noeud **)check_alloc(2*notu +1,sizeof(struct noeud *));
if(notu > 2) branches =
(branche_noeud *)check_alloc(notu-2, sizeof(branche_noeud));
for(i=0; i<2*notu+1; i++) *(tabtax+i)=
(struct noeud *)check_alloc(1,s_noeud);
loadphylip(arbre);
free(arbre);
if(notu == 0) goto erreur;
if(!rooted) {
racine = *(tabtax+(++num_noeud));
if(num_noeud >= 2*notu + 1) return("Error: incorrect tree file");
if(has_br_length) {
place_midpoint_root();
}
else {
struct noeud *centre = *(tabtax + num_noeud - 1);
racine->v1 = centre->v1;
racine->v2 = centre;
racine->v3 = NULL;
centre->v1 = racine;
if(racine->v1->v1 == centre)
racine->v1->v1 = racine;
else if(racine->v1->v2 == centre)
racine->v1->v2 = racine;
else
racine->v1->v3 = racine;
}
}
else {
racine = *(tabtax+num_noeud);
root_br_l= racine->l1 + racine->l2;
if(!has_br_length) tree_bal(racine,racine->v1,racine->v2);
}
if(notu+1<3) return ("Tree should contain at least 3 elements.");
return (NULL);
erreur:
return ("Not a valid tree file: ");
} /* end of preptree */
void make_binary_or_unrooted(char *arbre)
{
char *finarbre, *deba, *debb, *debc;
finarbre= nextpar(arbre,arbre);
*(finarbre + 1) = 0;
deba=arbre+1;
debb=deba;
while(*debb != ',') {
if(*debb == 0) { err_message("Incorrect tree file"); exit(1); }
if(*debb == '(')debb=nextpar(debb,debb);
debb++;
}
debb++;
debc=debb;
while(*debc != ',' && debc<finarbre) {
if(*debc == '(')debc=nextpar(debc,debc);
debc++;
}
if(*debc == ',') {
/* the tree is unrooted <==> it has 3 subtrees or more at its bottommost level */
make_binary(arbre , debb, finarbre - 1, TRUE);
make_binary(arbre , deba, debb - 2, TRUE);
}
else make_binary(arbre , deba, finarbre - 1, TRUE);
return;
}
int make_binary(char *arbre, char *debut, char *fin, int go_down)
{
int virg, l, retval;
char *p, *q;
p = debut; virg = 0; retval = 0;
while(p < fin) {
if(*p == ',') virg++;
else if(*p == '(') {
q = nextpar(p,p);
if(go_down) {
l = make_binary(arbre, p+1, q-1, TRUE);
fin += l;
retval += l;
p = q + l;
}
else p = q;
}
p++;
}
if(virg > 1) { /* multifurcation */
/* make sure tree has branch lengths */
if( memchr(debut, ':', fin - debut + 1) == NULL) {
err_message("Cannot process multibranched tree without branch lengths");
exit(1);
}
/* recherche de la 2eme virgule */
p = debut; l = 0;
while(TRUE) {
if(*p == ',') {
l++;
if(l == 2) break;
}
else if(*p == '(') {
p = nextpar(p,p);
}
p++;
}
l = strlen(p);
memmove(p + 4, p, l + 1);
memmove(debut + 1, debut, p - debut);
*debut = '(';
memcpy(p + 1, "):0", 3);
fin += 4;
retval += 4;
if(virg > 2) retval += make_binary(arbre, debut, fin, FALSE);
}
return retval;
}
void loadphylip(char *arbre)
{
char *deba,*debb,*debc, *finarbre;
struct noeud *p1, *p2, *p3, *p;
branche_noeud *int_br_g, *int_br_d;
int i;
has_br_length=2;
/* ignore all stuff after last closing parenthesis
(needed for fastDNAml output)
*/
finarbre= nextpar(arbre,arbre);
rooted=0;
deba=arbre+1;
debb=deba;
while(*debb != ',') {
if(*debb == '(')debb=nextpar(arbre,debb);
debb++;
}
debb++;
debc=debb;
while(*debc != ',' && debc<finarbre) {
if(*debc == '(')debc=nextpar(arbre,debc);
debc++;
}
if(*debc==',') {
/* the tree is unrooted <==> it has 3 subtrees at its bottommost level */
debc++;
}
else {
/* the tree is rooted */
debc=finarbre+1;
rooted=1;
/*
notu--; //useless now
*/
}
num_noeud=notu;
nextotu= -1;
p1=unrootedset(arbre,deba,debb-2,&int_br_g);
if(p1 != NULL) p2=unrootedset(arbre,debb,debc-2,&int_br_d);
if(p1 == NULL || p2 == NULL || num_noeud + 1 >= 2*notu + 1) {
notu = 0;
return;
}
p = *(tabtax+(++num_noeud));
if(!has_br_length) {
p1->l3 = 0.5*p1->l3;
p2->l3 = 0.5*p2->l3;
}
p->v1=p1; p1->v3=p; p->l1=p1->l3;
if(int_br_g!=NULL) { int_br_g->bouta=p; int_br_g->boutb=p1; }
p->v2=p2; p2->v3=p; p->l2=p2->l3;
if(int_br_d!=NULL) { int_br_d->bouta=p; int_br_d->boutb=p2; }
if(!rooted) {
p3=unrootedset(arbre,debc,finarbre-1,&int_br_g);
if(p3 == NULL ) {
notu = 0;
return;
}
if(int_br_g!=NULL) { int_br_g->bouta=p; int_br_g->boutb=p3; }
p->v3=p3; p3->v3=p; p->l3=p3->l3;
}
else {
p->v3=NULL;
/* recherche d'un dernier label interne */
debc=finarbre+1;
while(*debc!=0 && *debc!=':' && *debc!='[') debc++;
if(debc-finarbre>1) {
int l=debc-finarbre-1;
totbranches++;
branches[totbranches].br_label=check_alloc(l+1,1);
memcpy(branches[totbranches].br_label,finarbre+1,l);
branches[totbranches].br_label[l]=0;
branches[totbranches].bouta=p1;
branches[totbranches].boutb=p2;
}
}
}
struct noeud *unrootedset(char *arbre, char *deb, char *fin, branche_noeud **p_int_br)
{
struct noeud *p;
char *virg;
int l;
branche_noeud *int_br_g, *int_br_d;
*p_int_br=NULL;
while(*deb==' ' || *deb=='\'')deb++;
while(*fin==' ')fin--;
virg=deb;
while(*virg != ',' && virg < fin) {
if(*virg == '(') virg=nextpar(arbre,virg);
virg++;
}
if(virg>fin) virg=deb;
if(*virg == ',') {
struct noeud *p1,*p2;
p1=unrootedset(arbre,deb,virg-1,&int_br_g);
if(p1 == NULL) return NULL;
p2=unrootedset(arbre,virg+1,fin,&int_br_d);
if(p2 == NULL) return NULL;
if(num_noeud + 1 >= 2*notu + 1)
return NULL;
p = *(tabtax+(++num_noeud));
p->v1=p1; p1->v3=p; p->l1=p1->l3;
if(int_br_g!=NULL) { int_br_g->bouta=p; int_br_g->boutb=p1; }
p->v2=p2; p2->v3=p; p->l2=p2->l3;
if(int_br_d!=NULL) { int_br_d->bouta=p; int_br_d->boutb=p2; }
}
else {
double brlength;
virg=deb;
while(*virg != ':' && virg < fin) {
if(*virg=='(')virg=nextpar(arbre,virg);
virg++;
}
if(virg>fin) virg=deb;
if(*virg == ':') {
if(has_br_length == 0) goto problem;
sscanf(virg+1,"%le",&brlength);
virg--;
has_br_length=1;
}
else {
if(has_br_length == 1) goto problem;
brlength=1;
has_br_length=0;
}
if(*deb == '(') {
char *fpar;
branche_noeud *prov;
fpar=nextpar(arbre,deb)-1;
p=unrootedset(arbre,deb+1,fpar,&prov);
if(p == NULL) return NULL;
/* recherche internal label */
l=virg-fpar-1;
if(l>0) {
totbranches++;
branches[totbranches].br_label=
check_alloc(l+1,1);
memcpy(branches[totbranches].br_label,fpar+2,l);
branches[totbranches].br_label[l]=0;
*p_int_br= &branches[totbranches];
}
}
else {
size_t n;
if( virg-1>=deb && *virg=='\'' )virg--;
n=virg-deb+1;
++nextotu;
p= *(tabtax+nextotu);
p->nom = (char *)check_alloc(n+1,1);
memcpy(p->nom, deb, n); p->nom[n] = 0;
p->v1=p->v2=p->v3=NULL;
}
p->l3=brlength;
}
return p;
problem:
err_message("Error: Inconsistent tree file for branch lengths.");
}
char *nextpar(char *text, char *pospar)
{
char *pos;
pos=pospar+1;
while(*pos != ')') {
if(*pos == '(') pos=nextpar(text,pos);
pos++;
}
return pos;
}
void free_tree(void)
{
int i;
if(notu == 0) return;
/* de-allocate all memory */
for(i=0; i<2*notu+1; i++) {
if(tabtax[i]->nom != NULL) free(tabtax[i]->nom);
free(tabtax[i]);
}
free(tabtax);
for(i=0; i<notu-2; i++)
if(branches[i].br_label != NULL) free(branches[i].br_label);
free(branches);
}
/* pour un arbre sans longueur de branche, les calculer de facon a ce
que toutes les feuilles arrivent a la meme profondeur */
double tree_bal(struct noeud *centre, struct noeud *p1, struct noeud *p2)
{
double ld, lg, pg, pd, *abup1, *abup2, *abdown1, *abdown2;
struct noeud *f1, *f2;
get_next_br(centre,p1,&abup1,&abdown1,&f1,&f2);
if(f1!=NULL) lg=tree_bal(p1,f1,f2);
else lg=0.0;
get_next_br(centre,p2,&abup2,&abdown2,&f1,&f2);
if(f1!=NULL) ld=tree_bal(p2,f1,f2);
else ld=0.0;
pg=lg+1; pd=ld+1;
if(pg>pd) pd=pg;
else pg=pd;
*abup1 = *abdown1 = pg-lg;
*abup2 = *abdown2 = pd-ld;
return (pg);
}
void get_next_br(struct noeud *pere, struct noeud *fils,
double **abdown, double **abup, struct noeud **f1, struct noeud **f2)
/* pour une branche pere->fils donnee, calculer dans *f1, *f2 les deux autres
voisins de fils et dans *abdown et *abup les adresses des longeurs de la
branche pere->fils dans les deux sens */
{
if(pere->v1==fils) *abdown= &(pere->l1);
else if(pere->v2==fils) *abdown=&(pere->l2);
else *abdown=&(pere->l3);
if(fils->v1==pere) {
*abup=&(fils->l1);
*f1=fils->v2;
*f2=fils->v3;
}
else if(fils->v2==pere) {
*abup=&(fils->l2);
*f1=fils->v1;
*f2=fils->v3;
}
else {
*abup=&(fils->l3);
*f1=fils->v1;
*f2=fils->v2;
}
}
void place_midpoint_root(void)
/* enraciner l'arbre sans racine en cherchant son centre
*/
{
struct noeud *aux;
double laux;
current_best_diff= 9.e99;
current_cote1=current_cote2=NULL;
parcourir_branches(*tabtax,NULL);
rooted = TRUE;
root_br_l = current_br_length;
/* il faut toujours que la racine soit telle que racine->v1->v3=racine */
if (current_cote1->v1 == current_cote2 ) {
/* echanger les voisins v1 et v3 de cote1 */
aux=current_cote1->v1;
current_cote1->v1=current_cote1->v3;
current_cote1->v3=aux;
laux=current_cote1->l1;
current_cote1->l1=current_cote1->l3;
current_cote1->l3=laux;
}
else if (current_cote1->v2 == current_cote2) {
/* echanger les voisins v2 et v3 de cote1 */
aux=current_cote1->v2;
current_cote1->v2=current_cote1->v3;
current_cote1->v3=aux;
laux=current_cote1->l2;
current_cote1->l2=current_cote1->l3;
current_cote1->l3=laux;
}
current_cote1->v3 = racine;
if (current_cote2->v1 == current_cote1 )
current_cote2->v1 = racine;
else if (current_cote2->v2 == current_cote1)
current_cote2->v2 = racine;
else
current_cote2->v3 = racine;
racine->v1=current_cote1;
racine->v2=current_cote2;
racine->v3=NULL;
racine->l3=0;
racine->l1=current_br_length*current_balance;
racine->l2=current_br_length - racine->l1;
}
void parcourir_branches(struct noeud *centre, struct noeud *origine)
/* parcourir recursivement toutes les branches de l'arbre sans racine
a partir de centre et dans la direction opposee a son voisin origine
*/
{
if(centre==NULL) return;
if(centre->v1!=origine) {
process_branche(centre,centre->v1,centre->l1);
parcourir_branches(centre->v1,centre);
}
if(centre->v2!=origine) {
process_branche(centre,centre->v2,centre->l2);
parcourir_branches(centre->v2,centre);
}
if(centre->v3!=origine) {
process_branche(centre,centre->v3,centre->l3);
parcourir_branches(centre->v3,centre);
}
}
void process_branche(struct noeud *cote1, struct noeud *cote2, double length)
/* calculer la prof moyenne des 2 cotes de la branche cote1<-->cote2
de longueur length
et memoriser la meilleure branche dans les variables globales
*/
{
double b1, b2, x, dist_root_side1, dist_root_side2, diff_betw_sides;
if(cote1==NULL || cote2==NULL) return;
b1=get_length_down(cote2,cote1);
b2=get_length_down(cote1,cote2);
if( fabs(length) > 1.e-5 )
x=(b2-b1+length)/(2*length);
else
x=0;
if(x<0) x=0;
if(x>1) x=1;
dist_root_side1=length*x+b1;
dist_root_side2=length*(1-x)+b2;
diff_betw_sides=fabs(dist_root_side1-dist_root_side2);
if(diff_betw_sides < current_best_diff ) {
current_best_diff=diff_betw_sides;
current_cote1=cote1;
current_cote2=cote2;
current_br_length=length;
current_balance=x;
}
}
double get_length_down(struct noeud *pere, struct noeud *racine)
/* compute the average length of the tree down a node */
{
if(racine == NULL) return 0.0;
else {
struct noeud *gauche, *droite;
double bg,bd,lg,ld;
if( racine->v1 == pere ) {
gauche =racine->v2; droite = racine->v3;
bg = (racine->l2); bd = (racine->l3);
}
else if( racine->v2 == pere ) {
gauche =racine->v1; droite = racine->v3;
bg = (racine->l1); bd = (racine->l3);
}
else {
gauche =racine->v1; droite = racine->v2;
bg = (racine->l1); bd = (racine->l2);
}
/* conserver cette ecriture sinon plante sur PC */
lg = ld = 0;
if(gauche != NULL) lg = get_length_down(racine,gauche);
lg += bg;
if(droite != NULL) ld = get_length_down(racine,droite);
ld += bd;
return ((lg+ld)/2);
}
}
bignoeud *cre_new_tree(struct noeud *debut, struct noeud *parent,
bignoeud *bigparent)
{
bignoeud *nouveau;
size_t l;
if(debut == NULL) return NULL;
nouveau = (bignoeud *)check_alloc(1, sizeof(bignoeud) );
if(debut->v1 == parent) {
nouveau->v1 = bigparent;
nouveau->v2 = cre_new_tree(debut->v2, debut, nouveau);
nouveau->v3 = cre_new_tree(debut->v3, debut, nouveau);
}
else if(debut->v2 == parent) {
nouveau->v2 = bigparent;
nouveau->v1 = cre_new_tree(debut->v1, debut, nouveau);
nouveau->v3 = cre_new_tree(debut->v3, debut, nouveau);
}
else {
nouveau->v3 = bigparent;
nouveau->v1 = cre_new_tree(debut->v1, debut, nouveau);
nouveau->v2 = cre_new_tree(debut->v2, debut, nouveau);
}
if(has_br_length) {
nouveau->l1 = debut->l1;
nouveau->l2 = debut->l2;
nouveau->l3 = debut->l3;
}
else {
if(nouveau->v1 != NULL) nouveau->l1 = 1;
if(nouveau->v2 != NULL) nouveau->l2 = 1;
if(nouveau->v3 != NULL) nouveau->l3 = 1;
}
if(debut->nom != NULL) { /*ajouter espace en tete du nom pour plus joli dessin*/
l = strlen(debut->nom);
nouveau->nom = (char *)check_alloc(l+2, 1);
nouveau->nom[0] = ' ';
memcpy(nouveau->nom + 1, debut->nom, l+1);
free(debut->nom);
debut->nom = nouveau->nom;
}
return nouveau;
}
void remove_big_root(bignoeud *bigracine)
{
bignoeud *p1, *p2;
double root_br_l;
p1=bigracine->v1;
p2=bigracine->v2;
root_br_l = bigracine->l1 + bigracine->l2;
if(p1->v1 == bigracine )
{p1->v1 = p2; p1->l1 = root_br_l;}
else if (p1->v2 == bigracine)
{p1->v2 = p2; p1->l2 = root_br_l;}
else
{p1->v3 = p2; p1->l3 = root_br_l;}
if(p2->v1 == bigracine )
{p2->v1 = p1; p2->l1 = root_br_l;}
else if (p2->v2 == bigracine)
{p2->v2 = p1; p2->l2 = root_br_l;}
else
{p2->v3 = p1; p2->l3 = root_br_l;}
}
double calc_dist_centre_feuilles(bignoeud *debut, bignoeud *parent)
{
double valeur, current;
if(debut == NULL) return 0;
valeur = 0; /* !!!!! conserver cette ecriture sinon plante sur PC !!!!!! */
if(debut->v1 != parent) {
current = calc_dist_centre_feuilles(debut->v1, debut);
current += debut->l1;
if(current > valeur) valeur = current;
}
if(debut->v2 != parent) {
current = calc_dist_centre_feuilles(debut->v2, debut);
current += debut->l2;
if(current > valeur) valeur = current;
}
if(debut->v3 != parent) {
current = calc_dist_centre_feuilles(debut->v3, debut);
current += debut->l3;
if(current > valeur) valeur = current;
}
return valeur;
}
double proc_null_neg_branches(bignoeud *debut, bignoeud *parent)
/* mettre branches negatives a 0 !attention dans un seul sens!
retourner la + petite branche non nulle
*/
{
double valeur, current;
if(debut == NULL) return 0;
valeur = 1e50;
if(debut->v1 != parent) {
if(debut->l1 < 0) debut->l1 = 0;
current = debut->l1;
if(current < valeur && current > 0) valeur = current;
current = proc_null_neg_branches(debut->v1, debut);
if(current < valeur && current > 0) valeur = current;
}
if(debut->v2 != parent) {
if(debut->l2 < 0) debut->l2 = 0;
current = debut->l2;
if(current < valeur && current > 0) valeur = current;
current = proc_null_neg_branches(debut->v2, debut);
if(current < valeur && current > 0) valeur = current;
}
if(debut->v3 != parent) {
if(debut->l3 < 0) debut->l3 = 0;
current = debut->l3;
if(current < valeur && current > 0) valeur = current;
current = proc_null_neg_branches(debut->v3, debut);
if(current < valeur && current > 0) valeur = current;
}
return valeur;
}
int set_angles_noeuds(bignoeud *debut, bignoeud *parent, double delta,
double *p_current_angle, double rayon)
{
int feuille = FALSE;
int poids, poids1, poids2;
double angle1 = -1, angle2 = -1;
static int totfeuilles=0;
char *nom;
if(debut == NULL) return 0;
if(debut->v1 != parent) {
poids = set_angles_noeuds(debut->v1, debut, delta, p_current_angle, rayon);
if(debut->v1 == NULL) feuille = TRUE;
else if (parent != NULL) {
angle1 = debut->v1->position.angle;
poids1 = poids;
}
}
if(debut->v2 != parent) {
poids = set_angles_noeuds(debut->v2, debut, delta, p_current_angle, rayon);
if(debut->v2 == NULL) feuille = TRUE;
else if (parent != NULL) {
if ( angle1 == -1 ) {
angle1 = debut->v2->position.angle;
poids1 = poids;
}
else {
angle2 = debut->v2->position.angle;
poids2 = poids;
}
}
}
if(debut->v3 != parent) {
poids = set_angles_noeuds(debut->v3, debut, delta, p_current_angle, rayon);
if(debut->v3 == NULL) feuille = TRUE;
else if (parent != NULL) {
angle2 = debut->v3->position.angle;
poids2 = poids;
}
}
if( feuille ) { totfeuilles++;
debut->position.angle = *p_current_angle;
*p_current_angle += delta;
poids = 1;
}
else if(parent != NULL) { /* faire angle moyen modulo 2.pi */
debut->position.angle = (poids1*angle1 + poids2*angle2)/(poids1+poids2);
poids = poids1 + poids2;
if( angle1 > angle2 )
debut->position.angle -= M_PI;
}
debut->position.r = rayon;
calc_cartesienne(&(debut->position));
return poids;
}
void calc_cartesienne( cp_point *p)
{
p->x = p->r * cos(p->angle);
p->y = p->r * sin(p->angle);
return;
}
void calc_polaire( cp_point *p)
{
p->r = sqrt(p->x * p->x + p->y * p->y);
if( p->x == 0 ) {
if( p->y == 0) p->angle = 0;
else if (p->y > 0) p->angle = M_PI_2;
else p->angle = 3*M_PI_2;
}
else if (p->x > 0) {
p->angle = atan( p->y / p->x );
if( p->angle < 0 ) p->angle += 2*M_PI;
}
else {
p->angle = M_PI - atan( p->y / p->x );
}
return;
}
cp_point calc_point_direction( cp_point *depart, cp_point *direction,
double longueur)
{
static cp_point retour;
double lac, eps, tmp1, tmp2;
tmp1 = direction->x - depart->x;
tmp2 = direction->y - depart->y;
lac = sqrt( tmp1*tmp1 + tmp2*tmp2 );
/* on remplace les branches nulles par des branches tres courtes pour que le
calcul de l'angle en double soit bon mais que le dessin en entier soit le
meme
*/
if(longueur == 0) longueur = mini_br_length;
eps = longueur / lac;
retour.x = depart->x + eps * tmp1;
retour.y = depart->y + eps * tmp2;
calc_polaire(&retour);
return retour;
}
branche *calc_position_noeuds(bignoeud *debut, bignoeud *parent,
branche *curr_branche)
{
if(debut->v1 != parent && debut->v1 != NULL ) {
debut->v1->position = calc_point_direction( &(debut->position), &(debut->v1->position), debut->l1);
curr_branche = calc_position_noeuds(debut->v1, debut, curr_branche);
mem_line(&debut->position, &debut->v1->position, debut->v1,
curr_branche);
curr_branche++;
}
if(debut->v2 != parent && debut->v2 != NULL ) {
debut->v2->position = calc_point_direction( &(debut->position), &(debut->v2->position), debut->l2);
curr_branche = calc_position_noeuds(debut->v2, debut, curr_branche);
mem_line(&debut->position, &debut->v2->position, debut->v2,
curr_branche);
curr_branche++;
}
if(debut->v3 != parent && debut->v3 != NULL ) {
debut->v3->position = calc_point_direction( &(debut->position), &(debut->v3->position), debut->l3);
curr_branche = calc_position_noeuds(debut->v3, debut, curr_branche);
mem_line(&debut->position, &debut->v3->position, debut->v3,
curr_branche);
curr_branche++;
}
return curr_branche;
}
void mem_line(cp_point *debut, cp_point *fin, bignoeud *noeud_term, branche *br)
{
br->debut = *debut;
br->fin = *fin;
br->nom = noeud_term->nom;
}
void draw_tree(plot_data *ob, branche *branches, int comp_phys_bounds)
{
int char_width, char_height, num, dernier, encore = FALSE, ascend, descend;
hit result;
hits_field hits;
char_width = my_get_string_width("M");
char_height = my_get_char_height(&ascend, &descend);
dernier = 2*(notu+1)-3;
if( comp_phys_bounds ) {
/* rendre dimensions carrees */
if (phys_max_x - phys_min_x > phys_max_y - phys_min_y)
phys_max_x = phys_min_x + (phys_max_y - phys_min_y);
else if(phys_max_y - phys_min_y > phys_max_x - phys_min_x)
phys_max_y = phys_min_y + (phys_max_x - phys_min_x);
do {
hits.left = hits.right = hits.top = hits.bottom = 0;
for(num = 0; num < dernier; num++) {
result = draw_line(branches+num, ob, FALSE,
char_width, char_height, descend, ascend);
if(result == LEFT_HIT) hits.left = 1;
else if(result == RIGHT_HIT) hits.right = 1;
else if(result == TOP_HIT) hits.top = 1;
else if(result == BOTTOM_HIT) hits.bottom = 1;
}
encore = chg_phys(ob, hits, char_height);
}
while (encore);
for(num = 0; num < dernier; num++) branches[num].color = FALSE;
}
for(num=0; num< dernier; num++) {
draw_line(branches+num, ob, TRUE, char_width, char_height,
descend, ascend);
}
if(has_br_length) draw_scale(ob, char_height, ascend);
}
int chg_phys(plot_data *ob, hits_field hits, int char_height)
{
int encore = FALSE;
const float delta = 0.05;
int value;
static int lr = 0, tb = 0, oldvaluex = 0, oldvaluey = 0;
if(hits.left == 1 && hits.right == 0) {
if(oldvaluex == 0) value = (phys_max_x - phys_min_x) * delta;
else value = oldvaluex;
if(value < 2) value = 2;
if(lr == 2) { /* alternance left/right */
if(oldvaluex <= 2) {
hits.right = 1;
return chg_phys(ob, hits, char_height);
}
value = oldvaluex/2;
}
lr = 1;
oldvaluex = value;
phys_min_x += value;
phys_max_x += value;
if(phys_max_x <= phys_min_x) {
phys_max_x = phys_min_x + 1;
return FALSE;
}
encore = TRUE;
}
else if(hits.left == 0 && hits.right == 1) {
if(oldvaluex == 0) value = (phys_max_x - phys_min_x) * delta;
else value = oldvaluex;
if(value < 2) value = 2;
if(lr == 1) { /* alternance left/right */
if(oldvaluex <= 2) {
hits.left = 1;
return chg_phys(ob, hits, char_height);
}
value = oldvaluex/2;
}
lr = 2;
oldvaluex = value;
phys_max_x -= value;
phys_min_x -= value;
if(phys_max_x <= phys_min_x) {
phys_max_x = phys_min_x + 1;
return FALSE;
}
encore = TRUE;
}
else if(hits.left == 1 && hits.right == 1) {
lr = tb = 0;
oldvaluex = 0;
value = (phys_max_x - phys_min_x) * delta / 2; if(value < 2) value = 2;
phys_min_x += value;
phys_max_x -= value;
if(phys_max_x <= phys_min_x) {
phys_max_x = phys_min_x + 1;
return FALSE;
}
encore = TRUE;
phys_max_y = phys_min_y + (phys_max_x - phys_min_x);
}
if(hits.top == 0 && hits.bottom == 1) {
if(oldvaluey == 0) value = (phys_max_y - phys_min_y) * delta;
else value = oldvaluey;
if(value < 2) value = 2;
if(tb == 2) {
if(oldvaluey <= 2) {
hits.top = 1;
return chg_phys(ob, hits, char_height);
}
value = oldvaluey/2;
}
tb = 1;
oldvaluey = value;
phys_max_y -= value;
phys_min_y -= value;
if(phys_max_y <= phys_min_y) {
phys_max_y = phys_min_y + 1;
return FALSE;
}
encore = TRUE;
}
else if(hits.top == 1 && hits.bottom == 0) {
if(oldvaluey == 0) value = (phys_max_y - phys_min_y) * delta;
else value = oldvaluey;
if(value < 2) value = 2;
if(tb == 1) {
if(oldvaluey <= 2) {
hits.bottom = 1;
return chg_phys(ob, hits, char_height);
}
value = oldvaluey/2;
}
tb = 2;
oldvaluey = value;
phys_min_y += value;
phys_max_y += value;
if(phys_max_y <= phys_min_y) {
phys_max_y = phys_min_y + 1;
return FALSE;
}
encore = TRUE;
}
else if(hits.top == 1 && hits.bottom == 1) {
value = (phys_max_y - phys_min_y) * delta/2; if(value < 2) value = 2;
lr = tb = 0;
oldvaluey = 0;
phys_min_y += value;
phys_max_y -= value;
if(phys_max_y <= phys_min_y) {
phys_max_y = phys_min_y + 1;
return FALSE;
}
encore = TRUE;
phys_max_x = phys_min_x + (phys_max_y - phys_min_y);
}
return encore;
}
void log_to_phys(cp_point *log_pos, cp_point *phys_pos)
{
double factorx, factory;
factorx = (phys_max_x - phys_min_x) / (log_max_x - log_min_x);
factory = (phys_max_y - phys_min_y) / (log_max_y - log_min_y);
phys_pos->x = factorx * ( log_pos->x - log_min_x ) + phys_min_x;
phys_pos->y = factory * ( log_pos->y - log_min_y ) + phys_min_y;
}
double length_log_phys(double p)
{
double factor;
factor = (phys_max_x - phys_min_x) / (log_max_x - log_min_x);
return p * factor;
}
double length_phys_log(double p)
{
double factor;
factor = (phys_max_x - phys_min_x) / (log_max_x - log_min_x);
return p / factor;
}
double arrondi_echelle(double x)
{ /* arrondi x a une valeur 1, 2, 5 pour echelle */
double l, n;
int r;
static int corresp[] = {1,1,2,2,5,5,5,10,10,10,10,10};
/* 0,1,2,3,4,5,6, 7, 8, 9,10,11 */
l = log10(x);
n = floor(l);
l = x * pow(10, -n);
r = myrint(l); r = corresp[r];
return r * pow(10, n);
}
double calc_echelle(int larg)
{ /* rend taille logique pour echelle optimale */
double log_val, phys_val;
phys_val = larg/10;
log_val = length_phys_log(phys_val);
log_val = arrondi_echelle(log_val);
return log_val;
}
int myrint(double val)
{
if(val >= 0)
return (int)(val + 0.5);
else
return (int)(val - 0.5);
}
|