1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
|
R Under development (unstable) (2024-04-16 r86430) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## run reproduction scripts from the NLME book chapters
> testdir <- system.file("scripts", package = "nlme", mustWork = TRUE)
> scripts <- dir(testdir, pattern = "^ch[0-9]*\\.R$")
> for(f in scripts) {
+ writeLines(c("", strrep("=", nchar(f)), basename(f), strrep("=", nchar(f))))
+ set.seed(3)
+ options(warn = 1) # chapters set digits
+ source(file.path(testdir, f), echo = TRUE,
+ max.deparse.length = Inf, keep.source = TRUE)
+ }
======
ch01.R
======
> #-*- R -*-
>
> library(nlme)
> pdf(file = 'ch01.pdf')
> options( width = 65, digits = 5 )
> options( contrasts = c(unordered = "contr.helmert", ordered = "contr.poly") )
> # Chapter 1 Linear Mixed-Effects Models: Basic Concepts and Examples
>
> # 1.1 A Simple Example of Random Effects
>
> Rail
Grouped Data: travel ~ 1 | Rail
Rail travel
1 1 55
2 1 53
3 1 54
4 2 26
5 2 37
6 2 32
7 3 78
8 3 91
9 3 85
10 4 92
11 4 100
12 4 96
13 5 49
14 5 51
15 5 50
16 6 80
17 6 85
18 6 83
> fm1Rail.lm <- lm( travel ~ 1, data = Rail )
> fm1Rail.lm
Call:
lm(formula = travel ~ 1, data = Rail)
Coefficients:
(Intercept)
66.5
> fm2Rail.lm <- lm( travel ~ Rail - 1, data = Rail )
> fm2Rail.lm
Call:
lm(formula = travel ~ Rail - 1, data = Rail)
Coefficients:
Rail2 Rail5 Rail1 Rail6 Rail3 Rail4
31.7 50.0 54.0 82.7 84.7 96.0
> fm1Rail.lme <- lme(travel ~ 1, data = Rail, random = ~ 1 | Rail)
> summary( fm1Rail.lme )
Linear mixed-effects model fit by REML
Data: Rail
AIC BIC logLik
128.18 130.68 -61.089
Random effects:
Formula: ~1 | Rail
(Intercept) Residual
StdDev: 24.805 4.0208
Fixed effects: travel ~ 1
Value Std.Error DF t-value p-value
(Intercept) 66.5 10.171 12 6.5382 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.618827 -0.282177 0.035693 0.219558 1.614377
Number of Observations: 18
Number of Groups: 6
> fm1Rail.lmeML <- update( fm1Rail.lme, method = "ML" )
> summary( fm1Rail.lmeML )
Linear mixed-effects model fit by maximum likelihood
Data: Rail
AIC BIC logLik
134.56 137.23 -64.28
Random effects:
Formula: ~1 | Rail
(Intercept) Residual
StdDev: 22.624 4.0208
Fixed effects: travel ~ 1
Value Std.Error DF t-value p-value
(Intercept) 66.5 9.554 12 6.9604 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.610981 -0.288870 0.034542 0.213728 1.622223
Number of Observations: 18
Number of Groups: 6
> plot( fm1Rail.lme ) # produces Figure 1.4
> intervals( fm1Rail.lme )
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 44.339 66.5 88.661
Random Effects:
Level: Rail
lower est. upper
sd((Intercept)) 13.274 24.805 46.353
Within-group standard error:
lower est. upper
2.6950 4.0208 5.9987
> anova( fm1Rail.lme )
numDF denDF F-value p-value
(Intercept) 1 12 42.748 <.0001
> # 1.2 A Randomized Block Design
>
> plot.design( ergoStool ) # produces Figure 1.6
> contrasts( ergoStool$Type )
[,1] [,2] [,3]
T1 -1 -1 -1
T2 1 -1 -1
T3 0 2 -1
T4 0 0 3
> ergoStool1 <- ergoStool[ ergoStool$Subject == "1", ]
> model.matrix( effort ~ Type, ergoStool1 ) # X matrix for Subject 1
(Intercept) Type1 Type2 Type3
1 1 -1 -1 -1
2 1 1 -1 -1
3 1 0 2 -1
4 1 0 0 3
attr(,"assign")
[1] 0 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Type
[1] "contr.helmert"
> fm1Stool <-
+ lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)
> summary( fm1Stool )
Linear mixed-effects model fit by REML
Data: ergoStool
AIC BIC logLik
139.49 148.28 -63.743
Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 1.3325 1.1003
Fixed effects: effort ~ Type
Value Std.Error DF t-value p-value
(Intercept) 10.2500 0.48052 24 21.3309 0.0000
Type1 1.9444 0.25934 24 7.4976 0.0000
Type2 0.0926 0.14973 24 0.6184 0.5421
Type3 -0.3426 0.10588 24 -3.2358 0.0035
Correlation:
(Intr) Type1 Type2
Type1 0
Type2 0 0
Type3 0 0 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.802003 -0.643166 0.057831 0.700997 1.631421
Number of Observations: 36
Number of Groups: 9
> anova( fm1Stool )
numDF denDF F-value p-value
(Intercept) 1 24 455.01 <.0001
Type 3 24 22.36 <.0001
> options( contrasts = c( factor = "contr.treatment",
+ ordered = "contr.poly" ) )
> contrasts( ergoStool$Type )
T2 T3 T4
T1 0 0 0
T2 1 0 0
T3 0 1 0
T4 0 0 1
> fm2Stool <-
+ lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)
> summary( fm2Stool )
Linear mixed-effects model fit by REML
Data: ergoStool
AIC BIC logLik
133.13 141.93 -60.565
Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 1.3325 1.1003
Fixed effects: effort ~ Type
Value Std.Error DF t-value p-value
(Intercept) 8.5556 0.57601 24 14.8531 0.0000
TypeT2 3.8889 0.51868 24 7.4976 0.0000
TypeT3 2.2222 0.51868 24 4.2843 0.0003
TypeT4 0.6667 0.51868 24 1.2853 0.2110
Correlation:
(Intr) TypeT2 TypeT3
TypeT2 -0.45
TypeT3 -0.45 0.50
TypeT4 -0.45 0.50 0.50
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.802003 -0.643166 0.057831 0.700997 1.631421
Number of Observations: 36
Number of Groups: 9
> anova( fm2Stool )
numDF denDF F-value p-value
(Intercept) 1 24 455.01 <.0001
Type 3 24 22.36 <.0001
> model.matrix( effort ~ Type - 1, ergoStool1 )
TypeT1 TypeT2 TypeT3 TypeT4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
attr(,"assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Type
[1] "contr.treatment"
> fm3Stool <-
+ lme(effort ~ Type - 1, data = ergoStool, random = ~ 1 | Subject)
> summary( fm3Stool )
Linear mixed-effects model fit by REML
Data: ergoStool
AIC BIC logLik
133.13 141.93 -60.565
Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 1.3325 1.1003
Fixed effects: effort ~ Type - 1
Value Std.Error DF t-value p-value
TypeT1 8.5556 0.57601 24 14.853 0
TypeT2 12.4444 0.57601 24 21.605 0
TypeT3 10.7778 0.57601 24 18.711 0
TypeT4 9.2222 0.57601 24 16.011 0
Correlation:
TypeT1 TypeT2 TypeT3
TypeT2 0.595
TypeT3 0.595 0.595
TypeT4 0.595 0.595 0.595
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.802003 -0.643166 0.057831 0.700997 1.631421
Number of Observations: 36
Number of Groups: 9
> anova( fm3Stool )
numDF denDF F-value p-value
Type 4 24 130.52 <.0001
> intervals( fm1Stool )
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 9.25825 10.250000 11.24175
Type1 1.40919 1.944444 2.47970
Type2 -0.21644 0.092593 0.40162
Type3 -0.56111 -0.342593 -0.12408
Random Effects:
Level: Subject
lower est. upper
sd((Intercept)) 0.74962 1.3325 2.3685
Within-group standard error:
lower est. upper
0.82957 1.10029 1.45937
> plot( fm1Stool, # produces Figure 1.8
+ form = resid(., type = "p") ~ fitted(.) | Subject,
+ abline = 0 )
> # 1.3 Mixed-effects Models for Replicated, Blocked Designs
>
> with(Machines, interaction.plot( Machine, Worker, score, las = 1)) # Figure 1.10
> fm1Machine <-
+ lme( score ~ Machine, data = Machines, random = ~ 1 | Worker )
> fm1Machine
Linear mixed-effects model fit by REML
Data: Machines
Log-restricted-likelihood: -143.44
Fixed: score ~ Machine
(Intercept) MachineB MachineC
52.3556 7.9667 13.9167
Random effects:
Formula: ~1 | Worker
(Intercept) Residual
StdDev: 5.1466 3.1616
Number of Observations: 54
Number of Groups: 6
> fm2Machine <- update( fm1Machine, random = ~ 1 | Worker/Machine )
> fm2Machine
Linear mixed-effects model fit by REML
Data: Machines
Log-restricted-likelihood: -107.84
Fixed: score ~ Machine
(Intercept) MachineB MachineC
52.3556 7.9667 13.9167
Random effects:
Formula: ~1 | Worker
(Intercept)
StdDev: 4.781
Formula: ~1 | Machine %in% Worker
(Intercept) Residual
StdDev: 3.7295 0.96158
Number of Observations: 54
Number of Groups:
Worker Machine %in% Worker
6 18
> anova( fm1Machine, fm2Machine )
Model df AIC BIC logLik Test L.Ratio p-value
fm1Machine 1 5 296.88 306.54 -143.44
fm2Machine 2 6 227.69 239.28 -107.84 1 vs 2 71.191 <.0001
> ## delete selected rows from the Machines data
> MachinesUnbal <- Machines[ -c(2,3,6,8,9,12,19,20,27,33), ]
> ## check that the result is indeed unbalanced
> table(MachinesUnbal$Machine, MachinesUnbal$Worker)
6 2 4 1 3 5
A 3 2 2 1 1 3
B 3 3 3 1 2 2
C 3 3 3 3 3 3
> fm1MachinesU <- lme( score ~ Machine, data = MachinesUnbal,
+ random = ~ 1 | Worker/Machine )
> fm1MachinesU
Linear mixed-effects model fit by REML
Data: MachinesUnbal
Log-restricted-likelihood: -90.936
Fixed: score ~ Machine
(Intercept) MachineB MachineC
52.3540 7.9624 13.9182
Random effects:
Formula: ~1 | Worker
(Intercept)
StdDev: 4.7387
Formula: ~1 | Machine %in% Worker
(Intercept) Residual
StdDev: 3.7728 0.9332
Number of Observations: 44
Number of Groups:
Worker Machine %in% Worker
6 18
> intervals( fm1MachinesU )
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 47.2345 52.3540 57.474
MachineB 3.0278 7.9624 12.897
MachineC 8.9955 13.9182 18.841
Random Effects:
Level: Worker
lower est. upper
sd((Intercept)) 2.2162 4.7387 10.132
Level: Machine
lower est. upper
sd((Intercept)) 2.4091 3.7728 5.9085
Within-group standard error:
lower est. upper
0.71113 0.93320 1.22463
> fm4Stool <- lme( effort ~ Type, ergoStool, ~ 1 | Subject/Type )
> if (interactive()) intervals( fm4Stool )
> (fm1Stool$sigma)^2
[1] 1.2106
> (fm4Stool$sigma)^2 + 0.79621^2
[1] 0.84554
> Machine1 <- Machines[ Machines$Worker == "1", ]
> model.matrix( score ~ Machine, Machine1 ) # fixed-effects X_i
(Intercept) MachineB MachineC
1 1 0 0
2 1 0 0
3 1 0 0
19 1 1 0
20 1 1 0
21 1 1 0
37 1 0 1
38 1 0 1
39 1 0 1
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$Machine
[1] "contr.treatment"
> model.matrix( ~ Machine - 1, Machine1 ) # random-effects Z_i
MachineA MachineB MachineC
1 1 0 0
2 1 0 0
3 1 0 0
19 0 1 0
20 0 1 0
21 0 1 0
37 0 0 1
38 0 0 1
39 0 0 1
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Machine
[1] "contr.treatment"
> fm3Machine <- update( fm1Machine, random = ~Machine - 1 |Worker)
> summary( fm3Machine )
Linear mixed-effects model fit by REML
Data: Machines
AIC BIC logLik
228.31 247.63 -104.16
Random effects:
Formula: ~Machine - 1 | Worker
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
MachineA 4.07928 MachnA MachnB
MachineB 8.62529 0.803
MachineC 4.38948 0.623 0.771
Residual 0.96158
Fixed effects: score ~ Machine
Value Std.Error DF t-value p-value
(Intercept) 52.356 1.6807 46 31.1508 0.0000
MachineB 7.967 2.4209 46 3.2909 0.0019
MachineC 13.917 1.5401 46 9.0362 0.0000
Correlation:
(Intr) MachnB
MachineB 0.463
MachineC -0.374 0.301
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.393540 -0.513776 0.026908 0.472455 2.533387
Number of Observations: 54
Number of Groups: 6
> anova( fm1Machine, fm2Machine, fm3Machine )
Model df AIC BIC logLik Test L.Ratio p-value
fm1Machine 1 5 296.88 306.54 -143.44
fm2Machine 2 6 227.69 239.28 -107.84 1 vs 2 71.191 <.0001
fm3Machine 3 10 228.31 247.63 -104.16 2 vs 3 7.376 0.1173
> # 1.4 An Analysis of Covariance Model
>
> names( Orthodont )
[1] "distance" "age" "Subject" "Sex"
> levels( Orthodont$Sex )
[1] "Male" "Female"
> OrthoFem <- Orthodont[ Orthodont$Sex == "Female", ]
> fm1OrthF.lis <- lmList( distance ~ age, data = OrthoFem )
> coef( fm1OrthF.lis )
(Intercept) age
F10 13.55 0.450
F09 18.10 0.275
F06 17.00 0.375
F01 17.25 0.375
F05 19.60 0.275
F07 16.95 0.550
F02 14.20 0.800
F08 21.45 0.175
F03 14.40 0.850
F04 19.65 0.475
F11 18.95 0.675
> intervals( fm1OrthF.lis )
, , (Intercept)
lower est. upper
F10 10.071 13.55 17.029
F09 14.621 18.10 21.579
F06 13.521 17.00 20.479
F01 13.771 17.25 20.729
F05 16.121 19.60 23.079
F07 13.471 16.95 20.429
F02 10.721 14.20 17.679
F08 17.971 21.45 24.929
F03 10.921 14.40 17.879
F04 16.171 19.65 23.129
F11 15.471 18.95 22.429
, , age
lower est. upper
F10 0.1401 0.450 0.7599
F09 -0.0349 0.275 0.5849
F06 0.0651 0.375 0.6849
F01 0.0651 0.375 0.6849
F05 -0.0349 0.275 0.5849
F07 0.2401 0.550 0.8599
F02 0.4901 0.800 1.1099
F08 -0.1349 0.175 0.4849
F03 0.5401 0.850 1.1599
F04 0.1651 0.475 0.7849
F11 0.3651 0.675 0.9849
> plot( intervals ( fm1OrthF.lis ) ) # produces Figure 1.12
> fm2OrthF.lis <- update( fm1OrthF.lis, distance ~ I( age - 11 ) )
> plot( intervals( fm2OrthF.lis ) ) # produces Figure 1.13
> fm1OrthF <-
+ lme( distance ~ age, data = OrthoFem, random = ~ 1 | Subject )
> summary( fm1OrthF )
Linear mixed-effects model fit by REML
Data: OrthoFem
AIC BIC logLik
149.22 156.17 -70.609
Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 2.0685 0.78003
Fixed effects: distance ~ age
Value Std.Error DF t-value p-value
(Intercept) 17.3727 0.85874 32 20.2304 0
age 0.4795 0.05259 32 9.1186 0
Correlation:
(Intr)
age -0.674
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.27365 -0.70902 0.17282 0.41221 1.63252
Number of Observations: 44
Number of Groups: 11
> fm1OrthFM <- update( fm1OrthF, method = "ML" )
> summary( fm1OrthFM )
Linear mixed-effects model fit by maximum likelihood
Data: OrthoFem
AIC BIC logLik
146.03 153.17 -69.015
Random effects:
Formula: ~1 | Subject
(Intercept) Residual
StdDev: 1.9699 0.76812
Fixed effects: distance ~ age
Value Std.Error DF t-value p-value
(Intercept) 17.3727 0.85063 32 20.4234 0
age 0.4795 0.05301 32 9.0471 0
Correlation:
(Intr)
age -0.685
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.30562 -0.71924 0.17636 0.42580 1.66894
Number of Observations: 44
Number of Groups: 11
> fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )
> anova( fm1OrthF, fm2OrthF )
Model df AIC BIC logLik Test L.Ratio p-value
fm1OrthF 1 4 149.22 156.17 -70.609
fm2OrthF 2 6 149.43 159.85 -68.714 1 vs 2 3.7896 0.1503
> random.effects( fm1OrthF )
(Intercept)
F10 -4.005329
F09 -1.470449
F06 -1.470449
F01 -1.229032
F05 -0.021947
F07 0.340179
F02 0.340179
F08 0.702304
F03 1.064430
F04 2.150807
F11 3.599309
> ranef( fm1OrthFM )
(Intercept)
F10 -3.995835
F09 -1.466964
F06 -1.466964
F01 -1.226119
F05 -0.021895
F07 0.339372
F02 0.339372
F08 0.700640
F03 1.061907
F04 2.145709
F11 3.590778
> coef( fm1OrthF )
(Intercept) age
F10 13.367 0.47955
F09 15.902 0.47955
F06 15.902 0.47955
F01 16.144 0.47955
F05 17.351 0.47955
F07 17.713 0.47955
F02 17.713 0.47955
F08 18.075 0.47955
F03 18.437 0.47955
F04 19.524 0.47955
F11 20.972 0.47955
> plot( compareFits(coef(fm1OrthF), coef(fm1OrthFM))) # Figure 1.15
> plot( augPred(fm1OrthF), aspect = "xy", grid = TRUE ) # Figure 1.16
> # 1.5 Models for Nested Classification Factors
>
> fm1Pixel <- lme( pixel ~ day + I(day^2), data = Pixel,
+ random = list( Dog = ~ day, Side = ~ 1 ) )
> intervals( fm1Pixel )
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 1053.0968 1073.33914 1093.5814
day 4.3797 6.12960 7.8795
I(day^2) -0.4349 -0.36735 -0.2998
Random Effects:
Level: Dog
lower est. upper
sd((Intercept)) 15.92760 28.36990 50.53187
sd(day) 1.08139 1.84375 3.14357
cor((Intercept),day) -0.89465 -0.55472 0.19197
Level: Side
lower est. upper
sd((Intercept)) 10.417 16.824 27.173
Within-group standard error:
lower est. upper
7.6345 8.9896 10.5852
> plot( augPred( fm1Pixel ) ) # produces Figure 1.18
> VarCorr( fm1Pixel )
Variance StdDev Corr
Dog = pdLogChol(day)
(Intercept) 804.8514 28.3699 (Intr)
day 3.3994 1.8438 -0.555
Side = pdLogChol(1)
(Intercept) 283.0572 16.8243
Residual 80.8130 8.9896
> summary( fm1Pixel )
Linear mixed-effects model fit by REML
Data: Pixel
AIC BIC logLik
841.21 861.97 -412.61
Random effects:
Formula: ~day | Dog
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 28.3699 (Intr)
day 1.8438 -0.555
Formula: ~1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.824 8.9896
Fixed effects: pixel ~ day + I(day^2)
Value Std.Error DF t-value p-value
(Intercept) 1073.34 10.1717 80 105.522 0
day 6.13 0.8793 80 6.971 0
I(day^2) -0.37 0.0339 80 -10.822 0
Correlation:
(Intr) day
day -0.517
I(day^2) 0.186 -0.668
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.829057 -0.449181 0.025549 0.557216 2.751965
Number of Observations: 102
Number of Groups:
Dog Side %in% Dog
10 20
> fm2Pixel <- update( fm1Pixel, random = ~ day | Dog)
> anova( fm1Pixel, fm2Pixel )
Model df AIC BIC logLik Test L.Ratio p-value
fm1Pixel 1 8 841.21 861.97 -412.61
fm2Pixel 2 7 884.52 902.69 -435.26 1 vs 2 45.309 <.0001
> fm3Pixel <- update( fm1Pixel, random = ~ 1 | Dog/Side )
> anova( fm1Pixel, fm3Pixel )
Model df AIC BIC logLik Test L.Ratio p-value
fm1Pixel 1 8 841.21 861.97 -412.61
fm3Pixel 2 6 876.84 892.41 -432.42 1 vs 2 39.629 <.0001
> fm4Pixel <- update( fm1Pixel, pixel ~ day + I(day^2) + Side )
> summary( fm4Pixel )
Linear mixed-effects model fit by REML
Data: Pixel
AIC BIC logLik
835.85 859.12 -408.93
Random effects:
Formula: ~day | Dog
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 28.4636 (Intr)
day 1.8438 -0.553
Formula: ~1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.507 8.9836
Fixed effects: pixel ~ day + I(day^2) + Side
Value Std.Error DF t-value p-value
(Intercept) 1077.95 10.8627 80 99.234 0.0000
day 6.13 0.8790 80 6.973 0.0000
I(day^2) -0.37 0.0339 80 -10.829 0.0000
SideR -9.22 7.6268 9 -1.209 0.2576
Correlation:
(Intr) day I(d^2)
day -0.484
I(day^2) 0.174 -0.667
SideR -0.351 0.000 0.000
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.809825 -0.471334 0.026103 0.541154 2.774701
Number of Observations: 102
Number of Groups:
Dog Side %in% Dog
10 20
> # 1.6 A Split-Plot Experiment
>
> fm1Oats <- lme( yield ~ ordered(nitro) * Variety, data = Oats,
+ random = ~ 1 | Block/Variety )
> anova( fm1Oats )
numDF denDF F-value p-value
(Intercept) 1 45 245.143 <.0001
ordered(nitro) 3 45 37.686 <.0001
Variety 2 10 1.485 0.2724
ordered(nitro):Variety 6 45 0.303 0.9322
> fm2Oats <- update( fm1Oats, yield ~ ordered(nitro) + Variety )
> anova( fm2Oats )
numDF denDF F-value p-value
(Intercept) 1 51 245.145 <.0001
ordered(nitro) 3 51 41.053 <.0001
Variety 2 10 1.485 0.2724
> summary( fm2Oats )
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
587.46 607.16 -284.73
Random effects:
Formula: ~1 | Block
(Intercept)
StdDev: 14.645
Formula: ~1 | Variety %in% Block
(Intercept) Residual
StdDev: 10.473 12.75
Fixed effects: yield ~ ordered(nitro) + Variety
Value Std.Error DF t-value p-value
(Intercept) 104.500 7.7975 51 13.4017 0.0000
ordered(nitro).L 32.945 3.0052 51 10.9627 0.0000
ordered(nitro).Q -5.167 3.0052 51 -1.7193 0.0916
ordered(nitro).C -0.447 3.0052 51 -0.1488 0.8823
VarietyMarvellous 5.292 7.0789 10 0.7475 0.4720
VarietyVictory -6.875 7.0789 10 -0.9712 0.3544
Correlation:
(Intr) or().L or().Q or().C VrtyMr
ordered(nitro).L 0.000
ordered(nitro).Q 0.000 0.000
ordered(nitro).C 0.000 0.000 0.000
VarietyMarvellous -0.454 0.000 0.000 0.000
VarietyVictory -0.454 0.000 0.000 0.000 0.500
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.841341 -0.662797 -0.066943 0.638225 1.660668
Number of Observations: 72
Number of Groups:
Block Variety %in% Block
6 18
> fm3Oats <- update( fm1Oats, yield ~ ordered( nitro ) )
> summary( fm3Oats )
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
597.61 613.14 -291.8
Random effects:
Formula: ~1 | Block
(Intercept)
StdDev: 14.506
Formula: ~1 | Variety %in% Block
(Intercept) Residual
StdDev: 11.039 12.75
Fixed effects: yield ~ ordered(nitro)
Value Std.Error DF t-value p-value
(Intercept) 103.972 6.6407 51 15.6569 0.0000
ordered(nitro).L 32.945 3.0052 51 10.9627 0.0000
ordered(nitro).Q -5.167 3.0052 51 -1.7193 0.0916
ordered(nitro).C -0.447 3.0052 51 -0.1488 0.8823
Correlation:
(Intr) or().L or().Q
ordered(nitro).L 0
ordered(nitro).Q 0 0
ordered(nitro).C 0 0 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.781556 -0.611689 0.022224 0.622007 1.681382
Number of Observations: 72
Number of Groups:
Block Variety %in% Block
6 18
> fm4Oats <-
+ lme( yield ~ nitro, data = Oats, random = ~ 1 | Block/Variety )
> summary( fm4Oats )
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
603.04 614.28 -296.52
Random effects:
Formula: ~1 | Block
(Intercept)
StdDev: 14.506
Formula: ~1 | Variety %in% Block
(Intercept) Residual
StdDev: 11.005 12.867
Fixed effects: yield ~ nitro
Value Std.Error DF t-value p-value
(Intercept) 81.872 6.9453 53 11.788 0
nitro 73.667 6.7815 53 10.863 0
Correlation:
(Intr)
nitro -0.293
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.743808 -0.664752 0.017104 0.542988 1.802989
Number of Observations: 72
Number of Groups:
Block Variety %in% Block
6 18
> VarCorr( fm4Oats )
Variance StdDev
Block = pdLogChol(1)
(Intercept) 210.42 14.506
Variety = pdLogChol(1)
(Intercept) 121.10 11.005
Residual 165.56 12.867
> intervals( fm4Oats )
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 67.942 81.872 95.803
nitro 60.065 73.667 87.269
Random Effects:
Level: Block
lower est. upper
sd((Intercept)) 6.6089 14.506 31.839
Level: Variety
lower est. upper
sd((Intercept)) 6.4081 11.005 18.898
Within-group standard error:
lower est. upper
10.637 12.867 15.565
> plot(augPred(fm4Oats), aspect = 2.5, layout = c(6, 3),
+ between = list(x = c(0, 0, 0.5, 0, 0))) # produces Figure 1.21
> # cleanup
>
> summary(warnings())
No warnings
======
ch02.R
======
> #-*- R -*-
>
> library( nlme )
> options( width = 65, digits = 5 )
> options( contrasts = c(unordered = "contr.helmert",
+ ordered = "contr.poly") )
> pdf( file = 'ch02.pdf' )
> # Chapter 2 Theory and Computational Methods for Linear Mixed-Effects Models
>
> # 2.2 Likelihood Estimation for LME Models
>
> Xmat <- matrix( c(1, 1, 1, 1, 8, 10, 12, 14), ncol = 2 )
> Xmat
[,1] [,2]
[1,] 1 8
[2,] 1 10
[3,] 1 12
[4,] 1 14
> Xqr <- qr( Xmat ) # creates a QR structure
> qr.R( Xqr ) # returns R
[,1] [,2]
[1,] -2 -22.0000
[2,] 0 -4.4721
> qr.Q( Xqr ) # returns Q-truncated
[,1] [,2]
[1,] -0.5 0.67082
[2,] -0.5 0.22361
[3,] -0.5 -0.22361
[4,] -0.5 -0.67082
> qr.Q( Xqr, complete = TRUE ) # returns the full Q
[,1] [,2] [,3] [,4]
[1,] -0.5 0.67082 0.023607 0.54721
[2,] -0.5 0.22361 -0.439345 -0.71202
[3,] -0.5 -0.22361 0.807869 -0.21760
[4,] -0.5 -0.67082 -0.392131 0.38240
> fm1Rail.lme <- lme( travel ~ 1, data = Rail, random = ~ 1 | Rail,
+ control = list( msVerbose = TRUE ) )
0: 61.048859: -1.81959
1: 61.048859: -1.81959
> fm1Rail.lme <- lme( travel ~ 1, data = Rail, random = ~ 1 | Rail,
+ control = list( msVerbose = TRUE, niterEM = 0 ))
0: 67.893737: -0.431523
1: 61.612483: -1.43152
2: 61.138913: -1.98441
3: 61.050114: -1.83866
4: 61.048866: -1.81819
5: 61.048859: -1.81960
6: 61.048859: -1.81959
> fm1Machine <-
+ lme( score ~ Machine, data = Machines, random = ~ 1 | Worker )
> fm2Machine <- update( fm1Machine, random = ~ 1 | Worker/Machine )
> anova( fm1Machine, fm2Machine )
Model df AIC BIC logLik Test L.Ratio p-value
fm1Machine 1 5 300.46 310.12 -145.23
fm2Machine 2 6 231.27 242.86 -109.64 1 vs 2 71.191 <.0001
> OrthoFem <- Orthodont[ Orthodont$Sex == "Female", ]
> fm1OrthF <- lme( distance ~ age, data = OrthoFem,
+ random = ~ 1 | Subject )
> fm2OrthF <- update( fm1OrthF, random = ~ age | Subject )
> orthLRTsim <- simulate.lme( fm1OrthF, m2 = fm2OrthF, nsim = 1000 )
> plot( orthLRTsim, df = c(1, 2) ) # produces Figure 2.3
> machineLRTsim <- simulate.lme(fm1Machine, m2 = fm2Machine, nsim= 1000)
> plot( machineLRTsim, df = c(0, 1), # produces Figure 2.4
+ layout = c(4,1), between = list(x = c(0, 0.5, 0)) )
> stoolLRTsim <-
+ simulate.lme( list(fixed = effort ~ 1, data = ergoStool,
+ random = ~ 1 | Subject),
+ m2 = list(fixed = effort ~ Type),
+ method = "ML", nsim = 1000 )
> plot( stoolLRTsim, df = c(3, 4) ) # Figure 2.5
> data( PBIB, package = 'SASmixed' )
> pbibLRTsim <-
+ simulate.lme(list( fixed = response ~ 1, data = PBIB,
+ random = ~ 1 | Block ),
+ m2 = list(fixed = response ~ Treatment, data = PBIB,
+ random = ~ 1 | Block),
+ method = "ML", nsim = 1000 )
> plot( pbibLRTsim, df = c(14,16,18), weights = FALSE ) # Figure 2.6
> summary( fm2Machine )
Linear mixed-effects model fit by REML
Data: Machines
AIC BIC logLik
231.27 242.86 -109.64
Random effects:
Formula: ~1 | Worker
(Intercept)
StdDev: 4.781
Formula: ~1 | Machine %in% Worker
(Intercept) Residual
StdDev: 3.7295 0.96158
Fixed effects: score ~ Machine
Value Std.Error DF t-value p-value
(Intercept) 59.650 2.14467 36 27.8131 0.0000
Machine1 3.983 1.08849 10 3.6595 0.0044
Machine2 3.311 0.62844 10 5.2688 0.0004
Correlation:
(Intr) Machn1
Machine1 0
Machine2 0 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.269587 -0.548466 -0.010706 0.439366 2.540058
Number of Observations: 54
Number of Groups:
Worker Machine %in% Worker
6 18
> fm1PBIB <- lme(response ~ Treatment, data = PBIB, random = ~ 1 | Block)
> anova( fm1PBIB )
numDF denDF F-value p-value
(Intercept) 1 31 1654.21 <.0001
Treatment 14 31 1.53 0.1576
> fm2PBIB <- update( fm1PBIB, method = "ML" )
> fm3PBIB <- update( fm2PBIB, response ~ 1 )
> anova( fm2PBIB, fm3PBIB )
Model df AIC BIC logLik Test L.Ratio p-value
fm2PBIB 1 17 56.571 92.174 -11.285
fm3PBIB 2 3 52.152 58.435 -23.076 1 vs 2 23.581 0.0514
> anova( fm2Machine )
numDF denDF F-value p-value
(Intercept) 1 36 773.57 <.0001
Machine 2 10 20.58 3e-04
> # cleanup
>
> summary(warnings())
No warnings
======
ch03.R
======
> #-*- R -*-
>
> # initialization
>
> library(nlme)
> options(width = 65, digits = 5)
> options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))
> pdf(file = 'ch03.pdf')
> # Chapter 3 Describing the Structure of Grouped Data
>
> # 3.1 The Display Formula and Its Components
>
> formula( Rail )
travel ~ 1 | Rail
> formula( ergoStool )
effort ~ Type | Subject
> formula( Machines )
score ~ Machine | Worker
> formula( Orthodont )
distance ~ age | Subject
> formula( Pixel )
pixel ~ day | Dog/Side
> formula( Oats )
yield ~ nitro | Block
> table( Oxboys$Subject )
10 26 25 9 2 6 7 17 16 15 8 20 1 18 5 23 11 21 3 24 22
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
12 13 14 19 4
9 9 9 9 9
> table( getGroups( Oxboys ) )
10 26 25 9 2 6 7 17 16 15 8 20 1 18 5 23 11 21 3 24 22
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
12 13 14 19 4
9 9 9 9 9
> unique( table( getGroups( Oxboys ) ) ) # a more concise result
[1] 9
> unique( table( getCovariate( Oxboys ), getGroups( Oxboys ) ) )
[1] 1 0
> length( unique( getCovariate( Oxboys ) ) )
[1] 16
> unique( getGroups(Pixel, level = 1) )
[1] 1 2 3 4 5 6 7 8 9 10
Levels: 1 10 2 3 4 5 6 7 8 9
> unique( getGroups(Pixel, level = 2) )
[1] 1/R 2/R 3/R 4/R 5/R 6/R 7/R 8/R 9/R 10/R 1/L 2/L
[13] 3/L 4/L 5/L 6/L 7/L 8/L 9/L 10/L
20 Levels: 1/R < 2/R < 3/R < 4/R < 5/R < 6/R < 7/R < ... < 10/L
> Pixel.groups <- getGroups( Pixel, level = 1:2 )
> class( Pixel.groups )
[1] "data.frame"
> names( Pixel.groups )
[1] "Dog" "Side"
> unique( Pixel.groups[["Side"]] )
[1] R L
Levels: L R
> formula( PBG )
deltaBP ~ dose | Rabbit
> PBG.log <- update( PBG, formula = deltaBP ~ log(dose) | Rabbit )
> formula(PBG.log)
deltaBP ~ log(dose) | Rabbit
<environment: 0x55aa561e7958>
> unique( getCovariate(PBG.log) )
[1] 1.8326 2.5257 3.2189 3.9120 4.6052 5.2983
> unique( getCovariate(PBG) )
[1] 6.25 12.50 25.00 50.00 100.00 200.00
> # 3.2 Constructing groupedData Objects
>
> # The next line is not from the book.
> # It is added to ensure that the file is available
>
> write.table( Oxboys, "oxboys.dat" )
> Oxboys.frm <- read.table( "oxboys.dat", header = TRUE )
> class( Oxboys.frm ) # check the class of the result
[1] "data.frame"
> dim( Oxboys.frm ) # check the dimensions
[1] 234 4
> Oxboys <- groupedData( height ~ age | Subject,
+ data = read.table("oxboys.dat", header = TRUE),
+ labels = list(x = "Centered age", y = "Height"),
+ units = list(y = "(cm)") )
> Oxboys # display the object
Grouped Data: height ~ age | Subject
Subject age height Occasion
1 1 -1.0000 140.50 1
2 1 -0.7479 143.40 2
3 1 -0.4630 144.80 3
4 1 -0.1643 147.10 4
5 1 -0.0027 147.70 5
6 1 0.2466 150.20 6
7 1 0.5562 151.70 7
8 1 0.7781 153.30 8
9 1 0.9945 155.80 9
10 2 -1.0000 136.90 1
11 2 -0.7479 139.10 2
12 2 -0.4630 140.10 3
13 2 -0.1643 142.60 4
14 2 -0.0027 143.20 5
15 2 0.2466 144.00 6
16 2 0.5562 145.80 7
17 2 0.7781 146.80 8
18 2 0.9945 148.30 9
19 3 -1.0000 150.00 1
20 3 -0.7479 152.10 2
21 3 -0.4630 153.90 3
22 3 -0.1643 155.80 4
23 3 -0.0027 156.00 5
24 3 0.2466 156.90 6
25 3 0.5562 157.40 7
26 3 0.7781 159.10 8
27 3 0.9945 160.60 9
28 4 -1.0000 155.70 1
29 4 -0.7479 158.70 2
30 4 -0.4630 160.60 3
31 4 -0.1643 163.30 4
32 4 -0.0027 164.40 5
33 4 0.2466 167.30 6
34 4 0.5562 170.70 7
35 4 0.7781 172.00 8
36 4 0.9945 174.80 9
37 5 -1.0000 145.80 1
38 5 -0.7479 147.30 2
39 5 -0.4493 148.70 3
40 5 -0.1643 149.78 4
41 5 -0.0027 150.22 5
42 5 0.2466 152.50 6
43 5 0.5562 154.80 7
44 5 0.7781 156.40 8
45 5 0.9973 158.70 9
46 6 -1.0000 142.40 1
47 6 -0.7479 143.80 2
48 6 -0.4630 145.20 3
49 6 -0.1643 146.30 4
50 6 -0.0027 147.10 5
51 6 0.2466 148.10 6
52 6 0.5562 148.90 7
53 6 0.7781 149.10 8
54 6 0.9945 151.00 9
55 7 -1.0000 141.30 1
56 7 -0.7479 142.40 2
57 7 -0.4493 144.30 3
58 7 -0.1643 145.20 4
59 7 0.0000 146.10 5
60 7 0.2466 146.80 6
61 7 0.5562 147.90 7
62 7 0.7945 150.50 8
63 7 0.9945 151.80 9
64 8 -1.0000 141.70 1
65 8 -0.7479 143.70 2
66 8 -0.4630 145.10 3
67 8 -0.1643 147.90 4
68 8 -0.0027 148.10 5
69 8 0.2466 149.60 6
70 8 0.5562 150.99 7
71 8 0.7945 154.10 8
72 8 1.0055 154.90 9
73 9 -1.0000 132.70 1
74 9 -0.7479 134.10 2
75 9 -0.4493 135.30 3
76 9 -0.1643 136.60 4
77 9 -0.0027 137.50 5
78 9 0.2466 139.10 6
79 9 0.5562 140.90 7
80 9 0.7945 143.70 8
81 9 0.9945 144.70 9
82 10 -1.0000 126.20 1
83 10 -0.7479 128.20 2
84 10 -0.4630 129.00 3
85 10 -0.1643 129.40 4
86 10 -0.0027 129.59 5
87 10 0.2466 130.60 6
88 10 0.5562 132.50 7
89 10 0.7781 133.40 8
90 10 0.9945 134.20 9
91 11 -1.0000 142.50 1
92 11 -0.7479 143.80 2
93 11 -0.4630 145.60 3
94 11 -0.1643 148.30 4
95 11 -0.0027 149.40 5
96 11 0.2466 151.60 6
97 11 0.5562 154.80 7
98 11 0.7781 156.90 8
99 11 0.9945 159.20 9
100 12 -1.0000 149.90 1
101 12 -0.7479 151.70 2
102 12 -0.4630 153.30 3
103 12 -0.1643 156.10 4
104 12 0.0000 156.70 5
105 12 0.2466 157.80 6
106 12 0.5562 160.70 7
107 12 0.7781 162.70 8
108 12 0.9945 163.80 9
109 13 -1.0000 148.90 1
110 13 -0.7150 149.80 2
111 13 -0.4630 151.70 3
112 13 -0.1643 154.40 4
113 13 -0.0027 155.50 5
114 13 0.2466 156.40 6
115 13 0.5562 161.40 7
116 13 0.7781 163.90 8
117 13 0.9945 164.60 9
118 14 -1.0000 151.60 1
119 14 -0.7479 153.20 2
120 14 -0.4630 155.20 3
121 14 -0.1643 157.30 4
122 14 0.0000 159.10 5
123 14 0.2466 160.90 6
124 14 0.5562 164.40 7
125 14 0.7781 166.90 8
126 14 0.9945 168.40 9
127 15 -1.0000 137.50 1
128 15 -0.7479 139.30 2
129 15 -0.4630 140.90 3
130 15 -0.1643 142.70 4
131 15 -0.0027 144.20 5
132 15 0.2466 145.70 6
133 15 0.5562 147.09 7
134 15 0.7781 150.20 8
135 15 0.9945 152.30 9
136 16 -1.0000 142.80 1
137 16 -0.7479 144.90 2
138 16 -0.4630 145.00 3
139 16 -0.1643 146.70 4
140 16 -0.0027 147.20 5
141 16 0.2466 148.90 6
142 16 0.5562 150.10 7
143 16 0.7781 151.00 8
144 16 0.9945 152.20 9
145 17 -1.0000 134.90 1
146 17 -0.7479 137.40 2
147 17 -0.4630 138.20 3
148 17 -0.1643 140.20 4
149 17 -0.0027 143.60 5
150 17 0.2466 144.20 6
151 17 0.5562 147.90 7
152 17 0.7781 150.30 8
153 17 0.9945 151.80 9
154 18 -1.0000 145.50 1
155 18 -0.7479 146.20 2
156 18 -0.4630 148.20 3
157 18 -0.1643 150.30 4
158 18 -0.0027 152.00 5
159 18 0.2466 152.30 6
160 18 0.5562 154.30 7
161 18 0.7781 156.20 8
162 18 0.9945 156.80 9
163 19 -1.0000 156.90 1
164 19 -0.7479 157.90 2
165 19 -0.4630 160.30 3
166 19 -0.1643 161.90 4
167 19 0.0000 163.80 5
168 19 0.2466 165.50 6
169 19 0.5562 169.90 7
170 19 0.7781 172.40 8
171 19 0.9945 174.40 9
172 20 -1.0000 146.50 1
173 20 -0.7479 148.40 2
174 20 -0.4630 149.30 3
175 20 -0.1643 151.20 4
176 20 -0.0027 152.10 5
177 20 0.2466 152.40 6
178 20 0.5562 153.90 7
179 20 0.7781 154.90 8
180 20 0.9945 155.40 9
181 21 -1.0000 143.90 1
182 21 -0.7479 145.10 2
183 21 -0.4630 147.00 3
184 21 -0.1643 149.20 4
185 21 -0.0027 149.80 5
186 21 0.2466 151.50 6
187 21 0.5562 153.17 7
188 21 0.7781 156.90 8
189 21 0.9945 159.60 9
190 22 -1.0000 147.40 1
191 22 -0.7479 148.80 2
192 22 -0.4630 150.10 3
193 22 -0.1643 152.50 4
194 22 -0.0027 154.70 5
195 22 0.2466 156.00 6
196 22 0.5562 158.40 7
197 22 0.7781 161.50 8
198 22 0.9945 163.30 9
199 23 -1.0000 144.50 1
200 23 -0.7479 146.00 2
201 23 -0.4630 147.40 3
202 23 -0.1643 149.20 4
203 23 -0.0027 150.80 5
204 23 0.2466 152.50 6
205 23 0.5562 155.00 7
206 23 0.7781 156.80 8
207 23 0.9945 158.80 9
208 24 -1.0000 147.80 1
209 24 -0.7479 148.20 2
210 24 -0.4630 150.20 3
211 24 -0.1643 151.00 4
212 24 -0.0027 152.20 5
213 24 0.2466 153.60 6
214 24 0.5562 155.80 7
215 24 0.7781 159.20 8
216 24 0.9945 161.60 9
217 25 -1.0000 135.50 1
218 25 -0.7479 136.60 2
219 25 -0.4630 137.30 3
220 25 -0.1643 138.20 4
221 25 -0.0027 139.00 5
222 25 0.2466 139.50 6
223 25 0.5562 141.00 7
224 25 0.7808 142.70 8
225 25 0.9945 143.90 9
226 26 -1.0000 132.20 1
227 26 -0.7479 134.30 2
228 26 -0.4630 135.10 3
229 26 -0.1643 136.70 4
230 26 -0.0027 138.40 5
231 26 0.2466 138.90 6
232 26 0.5562 141.80 7
233 26 0.7781 142.60 8
234 26 1.0055 143.10 9
> unique( getGroups( Oxboys ) )
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[21] 21 22 23 24 25 26
26 Levels: 10 < 26 < 25 < 9 < 2 < 6 < 7 < 17 < 16 < 15 < ... < 4
> plot( BodyWeight, outer = ~ Diet, aspect = 3 ) # Figure 3.3
> plot( BodyWeight, outer = TRUE, aspect = 3 )
> plot( Soybean, outer = ~ Year * Variety ) # Figure 6.10
> plot( Soybean, outer = ~ Variety * Year )
> gsummary( BodyWeight, invar = TRUE )
Rat Diet
2 2 1
3 3 1
4 4 1
1 1 1
8 8 1
5 5 1
6 6 1
7 7 1
11 11 2
9 9 2
10 10 2
12 12 2
13 13 3
15 15 3
14 14 3
16 16 3
> plot( PBG, inner = ~ Treatment, scales = list(x = list(log = 2)))
> ergoStool.mat <- asTable( ergoStool )
> ergoStool.mat
T1 T2 T3 T4
8 7 11 8 7
5 8 11 8 7
4 7 11 10 9
9 9 13 10 8
6 9 11 11 10
3 7 14 13 9
7 8 12 12 11
1 12 15 12 10
2 10 14 13 12
> ergoStool.new <- balancedGrouped( effort ~ Type | Subject,
+ data = ergoStool.mat )
> ergoStool.new
Grouped Data: effort ~ Type | Subject
Type Subject effort
1 T1 8 7
2 T2 8 11
3 T3 8 8
4 T4 8 7
5 T1 5 8
6 T2 5 11
7 T3 5 8
8 T4 5 7
9 T1 4 7
10 T2 4 11
11 T3 4 10
12 T4 4 9
13 T1 9 9
14 T2 9 13
15 T3 9 10
16 T4 9 8
17 T1 6 9
18 T2 6 11
19 T3 6 11
20 T4 6 10
21 T1 3 7
22 T2 3 14
23 T3 3 13
24 T4 3 9
25 T1 7 8
26 T2 7 12
27 T3 7 12
28 T4 7 11
29 T1 1 12
30 T2 1 15
31 T3 1 12
32 T4 1 10
33 T1 2 10
34 T2 2 14
35 T3 2 13
36 T4 2 12
> # 3.3 Controlling Trellis Graphics Presentations of Grouped Data
>
> plot(CO2, layout=c(6,2), between=list(x=c(0,0,0.5,0,0)))
> plot( Spruce, layout = c(7, 4, 3),
+ skip = c(rep(FALSE, 27), TRUE, rep(FALSE, 27), TRUE,
+ rep(FALSE, 12), rep(TRUE, 2), rep(FALSE,13)) )
> plot( Spruce, layout = c(9, 3, 3),
+ skip = c(rep(FALSE, 66), TRUE, TRUE, rep(FALSE, 13)) )
> unique( getCovariate(DNase) )
[1] 0.048828 0.195312 0.390625 0.781250 1.562500 3.125000
[7] 6.250000 12.500000
> log( unique(getCovariate(DNase)), 2 )
[1] -4.35614 -2.35614 -1.35614 -0.35614 0.64386 1.64386
[7] 2.64386 3.64386
> plot( DNase, layout=c(6,2), scales = list(x=list(log=2)) )
> plot(Pixel, layout = c(4,5),
+ between = list(x = c(0, 0.5, 0), y = 0.5))
> plot( Pixel, displayLevel = 1 )
> plot( Wafer, display = 1, collapse = 1 )
> plot( Wafer, display = 1, collapse = 1,
+ FUN = function(x) sqrt(var(x)), layout = c(10,1) )
> # 3.4 Summaries
>
> sapply( ergoStool, data.class )
effort Type Subject
"numeric" "factor" "ordered"
> gsummary( Theoph, inv = TRUE )
Subject Wt Dose
6 6 80.0 4.00
7 7 64.6 4.95
8 8 70.5 4.53
11 11 65.0 4.92
3 3 70.5 4.53
2 2 72.4 4.40
4 4 72.7 4.40
9 9 86.4 3.10
12 12 60.5 5.30
10 10 58.2 5.50
1 1 79.6 4.02
5 5 54.6 5.86
> gsummary( Theoph, omit = TRUE, inv = TRUE )
Wt Dose
6 80.0 4.00
7 64.6 4.95
8 70.5 4.53
11 65.0 4.92
3 70.5 4.53
2 72.4 4.40
4 72.7 4.40
9 86.4 3.10
12 60.5 5.30
10 58.2 5.50
1 79.6 4.02
5 54.6 5.86
> is.null(gsummary(Theoph, inv = TRUE, omit = TRUE)) # invariants present
[1] FALSE
> is.null(gsummary(Oxboys, inv = TRUE, omit = TRUE)) # no invariants
[1] TRUE
> gsummary( Theoph )
Subject Wt Dose Time conc
6 6 80.0 4.00 5.8882 3.5255
7 7 64.6 4.95 5.8655 3.9109
8 8 70.5 4.53 5.8900 4.2718
11 11 65.0 4.92 5.8718 4.5109
3 3 70.5 4.53 5.9073 5.0864
2 2 72.4 4.40 5.8691 4.8236
4 4 72.7 4.40 5.9400 4.9400
9 9 86.4 3.10 5.8682 4.8936
12 12 60.5 5.30 5.8764 5.4100
10 10 58.2 5.50 5.9155 5.9309
1 1 79.6 4.02 5.9500 6.4391
5 5 54.6 5.86 5.8936 5.7827
> gsummary( Theoph, FUN = max, omit = TRUE )
Wt Dose Time conc
6 80.0 4.00 23.85 6.44
7 64.6 4.95 24.22 7.09
8 70.5 4.53 24.12 7.56
11 65.0 4.92 24.08 8.00
3 70.5 4.53 24.17 8.20
2 72.4 4.40 24.30 8.33
4 72.7 4.40 24.65 8.60
9 86.4 3.10 24.43 9.03
12 60.5 5.30 24.15 9.75
10 58.2 5.50 23.70 10.21
1 79.6 4.02 24.37 10.50
5 54.6 5.86 24.35 11.40
> Quin.sum <- gsummary( Quinidine, omit = TRUE, FUN = mean )
> dim( Quin.sum )
[1] 136 13
> Quin.sum[1:10, ]
time conc dose interval Age Height Weight Race
109 30.2633 NA NA NA 70 67 58.000 Caucasian
70 0.7500 NA NA NA 68 69 75.000 Caucasian
23 52.0262 NA NA NA 75 72 108.000 Caucasian
92 8.8571 NA NA NA 68 72 65.000 Caucasian
111 18.1638 NA NA NA 68 66 56.000 Latin
5 24.3750 NA NA NA 62 71 66.000 Caucasian
18 196.8438 NA NA NA 87 69 85.375 Caucasian
24 31.2500 NA NA NA 55 69 89.000 Latin
2 12.2000 NA NA NA 58 69 85.000 Latin
88 4.7900 NA NA NA 85 72 77.000 Caucasian
Smoke Ethanol Heart Creatinine glyco
109 no none No/Mild >= 50 0.46000
70 no former No/Mild >= 50 1.15000
23 yes none No/Mild >= 50 0.83875
92 yes former No/Mild >= 50 1.27000
111 yes former No/Mild >= 50 1.23000
5 yes none Severe >= 50 1.39000
18 no none No/Mild < 50 1.26000
24 no former No/Mild >= 50 0.57000
2 no current Moderate >= 50 0.82000
88 no none Moderate >= 50 0.61000
> Quinidine[Quinidine[["Subject"]] == 3, 1:8]
Grouped Data: conc ~ time | Subject
Subject time conc dose interval Age Height Weight
17 3 0.00 NA 201 NA 67 69 69
18 3 8.00 NA 201 NA 67 69 69
19 3 16.00 NA 201 NA 67 69 69
20 3 24.00 NA 201 NA 67 69 69
21 3 32.00 NA 201 NA 67 69 69
22 3 41.25 2.4 NA NA 67 69 69
23 3 104.00 NA 201 8 67 69 69
24 3 113.00 2.3 NA NA 67 69 69
25 3 3865.00 NA 201 6 67 69 62
26 3 3873.00 NA 201 NA 67 69 62
27 3 3881.00 NA 201 NA 67 69 62
28 3 3889.00 NA 201 NA 67 69 62
29 3 3897.00 NA 201 NA 67 69 62
30 3 3900.00 NA NA NA 67 69 62
31 3 3905.00 NA 201 NA 67 69 62
32 3 3909.00 4.7 NA NA 67 69 62
33 3 4073.00 NA 201 8 67 69 62
> Quin.sum1 <- gsummary( Quinidine, omit = TRUE )
> Quin.sum1[1:10, 1:7]
time conc dose interval Age Height Weight
109 30.2633 0.50000 100.00 NaN 70 67 58.000
70 0.7500 0.60000 201.00 8 68 69 75.000
23 52.0262 0.56667 166.00 6 75 72 108.000
92 8.8571 0.70000 83.00 NaN 68 72 65.000
111 18.1638 0.90000 249.00 NaN 68 66 56.000
5 24.3750 0.70000 301.00 NaN 62 71 66.000
18 196.8438 0.93333 201.00 6 87 69 85.375
24 31.2500 1.10000 187.88 NaN 55 69 89.000
2 12.2000 1.20000 166.00 NaN 58 69 85.000
88 4.7900 1.20000 201.00 8 85 72 77.000
> summary( Quin.sum1 )
time conc dose interval
Min. : 0.1 Min. :0.50 Min. : 83 Min. : 5.00
1st Qu.: 19.3 1st Qu.:1.70 1st Qu.:198 1st Qu.: 6.00
Median : 47.2 Median :2.24 Median :201 Median : 6.00
Mean : 251.5 Mean :2.36 Mean :224 Mean : 6.99
3rd Qu.: 171.1 3rd Qu.:2.92 3rd Qu.:249 3rd Qu.: 8.00
Max. :5364.9 Max. :5.77 Max. :498 Max. :12.00
NA's :29
Age Height Weight Race
Min. :42.0 Min. :60.0 Min. : 41.0 Caucasian:91
1st Qu.:61.0 1st Qu.:67.0 1st Qu.: 67.8 Latin :35
Median :66.0 Median :70.0 Median : 79.2 Black :10
Mean :66.9 Mean :69.6 Mean : 79.2
3rd Qu.:73.0 3rd Qu.:72.0 3rd Qu.: 88.2
Max. :92.0 Max. :79.0 Max. :119.0
Smoke Ethanol Heart Creatinine glyco
no :94 none :90 No/Mild :55 < 50 : 36 Min. :0.390
yes:42 current:16 Moderate:40 >= 50:100 1st Qu.:0.885
former :30 Severe :41 Median :1.174
Mean :1.212
3rd Qu.:1.453
Max. :2.995
> summary( Quinidine )
Subject time conc dose
223 : 47 Min. : 0 Min. :0.40 Min. : 83
110 : 41 1st Qu.: 16 1st Qu.:1.60 1st Qu.:166
81 : 40 Median : 60 Median :2.30 Median :201
136 : 32 Mean : 373 Mean :2.45 Mean :225
7 : 31 3rd Qu.: 241 3rd Qu.:3.00 3rd Qu.:249
76 : 28 Max. :8096 Max. :9.40 Max. :603
(Other):1252 NA's :1110 NA's :443
interval Age Height Weight
Min. : 4.00 Min. :42.0 Min. :60.0 Min. : 41.0
1st Qu.: 6.00 1st Qu.:60.0 1st Qu.:67.0 1st Qu.: 69.5
Median : 6.00 Median :66.0 Median :69.0 Median : 78.0
Mean : 7.11 Mean :66.7 Mean :69.2 Mean : 79.7
3rd Qu.: 8.00 3rd Qu.:74.0 3rd Qu.:72.0 3rd Qu.: 89.0
Max. :12.00 Max. :92.0 Max. :79.0 Max. :119.0
NA's :1222
Race Smoke Ethanol Heart
Caucasian:968 no :1024 none :991 No/Mild :598
Latin :384 yes: 447 current:191 Moderate:375
Black :119 former :289 Severe :498
Creatinine glyco
< 50 : 418 Min. :0.39
>= 50:1053 1st Qu.:0.93
Median :1.23
Mean :1.28
3rd Qu.:1.54
Max. :3.16
> sum( ifelse(is.na(Quinidine[["conc"]]), 0, 1) )
[1] 361
> sum( !is.na(Quinidine[["conc"]]) )
[1] 361
> sum( !is.na(Quinidine[["dose"]]) )
[1] 1028
> gapply( Quinidine, "conc", function(x) sum(!is.na(x)) )
109 70 23 92 111 5 18 24 2 88 91 117 120 13 89 27
1 1 3 1 1 2 3 1 1 1 1 3 2 1 3 1
53 122 129 132 16 106 15 22 57 77 115 121 123 11 48 126
1 1 2 3 1 1 1 1 3 1 4 1 1 2 2 2
223 19 38 42 52 56 63 83 104 118 137 17 29 34 46 73
6 1 1 2 1 1 4 1 2 2 1 1 1 1 3 2
87 103 138 45 44 97 36 37 72 100 8 71 6 14 26 75
2 1 2 3 7 2 2 3 1 3 1 5 1 3 1 3
20 96 99 134 12 49 67 85 112 127 55 68 124 1 35 47
2 3 2 1 1 3 3 1 3 3 6 3 1 2 2 5
79 95 114 135 105 116 62 65 107 130 66 139 33 80 125 110
3 3 2 2 1 3 4 7 4 3 1 3 3 2 1 11
128 136 21 43 90 102 40 84 98 30 82 93 108 119 32 133
2 11 2 1 1 2 2 6 2 1 3 4 1 3 1 2
7 9 76 94 58 113 50 39 78 25 61 3 64 60 59 10
6 2 6 5 1 2 3 2 10 2 2 3 4 4 3 6
69 4 81 54 41 74 28 51
2 6 11 4 3 3 4 6
> table( gapply(Quinidine, "conc", function(x) sum(!is.na(x))) )
1 2 3 4 5 6 7 10 11
46 33 31 9 3 8 2 1 3
> changeRecords <- gapply( Quinidine, FUN = function(frm)
+ any(is.na(frm[["conc"]]) & is.na(frm[["dose"]])) )
> changeRecords
109 70 23 92 111 5 18 24 2 88
FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
91 117 120 13 89 27 53 122 129 132
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
16 106 15 22 57 77 115 121 123 11
FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
48 126 223 19 38 42 52 56 63 83
TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
104 118 137 17 29 34 46 73 87 103
FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
138 45 44 97 36 37 72 100 8 71
FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
6 14 26 75 20 96 99 134 12 49
FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
67 85 112 127 55 68 124 1 35 47
FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
79 95 114 135 105 116 62 65 107 130
TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
66 139 33 80 125 110 128 136 21 43
FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
90 102 40 84 98 30 82 93 108 119
FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
32 133 7 9 76 94 58 113 50 39
FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
78 25 61 3 64 60 59 10 69 4
FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
81 54 41 74 28 51
TRUE TRUE TRUE FALSE TRUE FALSE
> sort( as.numeric( names(changeRecords)[changeRecords] ) )
[1] 3 4 7 10 14 18 28 33 37 40 41 44 45 46 47
[16] 48 50 54 55 61 62 63 64 65 71 75 76 77 79 80
[31] 81 82 84 94 95 96 97 98 110 112 114 118 119 127 132
[46] 133 135 136 139 223
> Quinidine[29:31,]
Grouped Data: conc ~ time | Subject
Subject time conc dose interval Age Height Weight Race
29 3 3897 NA 201 NA 67 69 62 Caucasian
30 3 3900 NA NA NA 67 69 62 Caucasian
31 3 3905 NA 201 NA 67 69 62 Caucasian
Smoke Ethanol Heart Creatinine glyco
29 yes former Moderate < 50 1.71
30 yes former Moderate < 50 1.71
31 yes former Moderate < 50 1.71
> Quinidine[Quinidine[["Subject"]] == 4, ]
Grouped Data: conc ~ time | Subject
Subject time conc dose interval Age Height Weight Race
45 4 0.00 NA 332 NA 88 66 103 Black
46 4 7.00 NA 332 NA 88 66 103 Black
47 4 13.00 NA 332 NA 88 66 103 Black
48 4 19.00 NA 332 NA 88 66 103 Black
49 4 21.50 3.1 NA NA 88 66 103 Black
50 4 85.00 NA 249 6 88 66 103 Black
51 4 91.00 5.8 NA NA 88 66 103 Black
52 4 91.08 NA 249 NA 88 66 103 Black
53 4 97.00 NA 249 NA 88 66 103 Black
54 4 103.00 NA 249 NA 88 66 103 Black
55 4 105.00 NA NA NA 88 66 92 Black
56 4 109.00 NA 249 NA 88 66 92 Black
57 4 115.00 NA 249 NA 88 66 92 Black
58 4 145.00 NA 166 NA 88 66 92 Black
59 4 151.00 NA 166 NA 88 66 92 Black
60 4 156.00 3.1 NA NA 88 66 92 Black
61 4 157.00 NA 166 NA 88 66 92 Black
62 4 163.00 NA 166 NA 88 66 92 Black
63 4 169.00 NA 166 NA 88 66 92 Black
64 4 174.75 NA 201 NA 88 66 92 Black
65 4 177.00 NA NA NA 88 66 92 Black
66 4 181.50 3.1 NA NA 88 66 92 Black
67 4 245.00 NA 201 8 88 66 92 Black
68 4 249.00 NA NA NA 88 66 86 Black
69 4 252.50 3.2 NA NA 88 66 86 Black
70 4 317.00 NA 201 8 88 66 86 Black
71 4 326.00 1.9 NA NA 88 66 86 Black
Smoke Ethanol Heart Creatinine glyco
45 yes none Severe >= 50 1.48
46 yes none Severe >= 50 1.48
47 yes none Severe >= 50 1.48
48 yes none Severe >= 50 1.48
49 yes none Severe >= 50 1.48
50 yes none Severe >= 50 1.61
51 yes none Severe >= 50 1.61
52 yes none Severe >= 50 1.61
53 yes none Severe >= 50 1.61
54 yes none Severe >= 50 1.61
55 yes none Severe >= 50 1.61
56 yes none Severe >= 50 1.61
57 yes none Severe >= 50 1.61
58 yes none Severe >= 50 1.88
59 yes none Severe >= 50 1.88
60 yes none Severe >= 50 1.88
61 yes none Severe >= 50 1.88
62 yes none Severe >= 50 1.88
63 yes none Severe >= 50 1.88
64 yes none Severe >= 50 1.88
65 yes none Severe >= 50 1.68
66 yes none Severe >= 50 1.68
67 yes none Severe >= 50 1.87
68 yes none Severe >= 50 1.87
69 yes none Severe >= 50 1.87
70 yes none Severe >= 50 1.83
71 yes none Severe >= 50 1.83
> # cleanup
>
> summary(warnings())
No warnings
======
ch04.R
======
> #-*- R -*-
>
> # initialization
>
> library(nlme)
> library(lattice)
> options(width = 65,
+ ## reduce platform dependence in printed output when testing
+ digits = if(nzchar(Sys.getenv("R_TESTS"))) 3 else 5)
> options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))
> pdf(file = 'ch04.pdf')
> # Chapter 4 Fitting Linear Mixed-Effects Models
>
> # 4.1 Fitting Linear Models in S with lm and lmList
>
> fm1Orth.lm <- lm(distance ~ age, Orthodont)
> fm1Orth.lm
Call:
lm(formula = distance ~ age, data = Orthodont)
Coefficients:
(Intercept) age
16.76 0.66
> par(mfrow=c(2,2))
> plot(fm1Orth.lm) # Figure 4.1
> fm2Orth.lm <- update(fm1Orth.lm, formula = distance ~ Sex*age)
> summary(fm2Orth.lm)
Call:
lm(formula = distance ~ Sex + age + Sex:age, data = Orthodont)
Residuals:
Min 1Q Median 3Q Max
-5.616 -1.322 -0.168 1.330 5.247
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.8567 1.1094 15.19 < 2e-16 ***
Sex1 0.5161 1.1094 0.47 0.64
age 0.6320 0.0988 6.39 4.7e-09 ***
Sex1:age -0.1524 0.0988 -1.54 0.13
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.26 on 104 degrees of freedom
Multiple R-squared: 0.423, Adjusted R-squared: 0.406
F-statistic: 25.4 on 3 and 104 DF, p-value: 2.11e-12
> fm3Orth.lm <- update(fm2Orth.lm, formula = . ~ . - Sex)
> summary(fm3Orth.lm)
Call:
lm(formula = distance ~ age + Sex:age, data = Orthodont)
Residuals:
Min 1Q Median 3Q Max
-5.742 -1.242 -0.189 1.268 5.267
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.7611 1.0861 15.43 < 2e-16 ***
age 0.6403 0.0968 6.61 1.6e-09 ***
age:Sex1 -0.1074 0.0196 -5.47 3.0e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.25 on 105 degrees of freedom
Multiple R-squared: 0.422, Adjusted R-squared: 0.411
F-statistic: 38.3 on 2 and 105 DF, p-value: 3.31e-13
> bwplot(getGroups(Orthodont)~resid(fm2Orth.lm)) # Figure 4.2
> fm1Orth.lis <- lmList(distance ~ age | Subject, Orthodont)
> getGroupsFormula(Orthodont)
~Subject
> fm1Orth.lis <- lmList(distance ~ age, Orthodont)
> formula(Orthodont)
distance ~ age | Subject
> fm1Orth.lis <- lmList(Orthodont)
> fm1Orth.lis
Call:
Model: distance ~ age | Subject
Data: Orthodont
Coefficients:
(Intercept) age
M16 17.0 0.550
M05 13.7 0.850
M02 14.9 0.775
M11 20.1 0.325
M07 15.0 0.800
M08 19.8 0.375
M03 16.0 0.750
M12 13.2 1.000
M13 2.8 1.950
M14 19.1 0.525
M09 14.4 0.975
M15 13.5 1.125
M06 19.0 0.675
M04 24.7 0.175
M01 17.3 0.950
M10 21.2 0.750
F10 13.5 0.450
F09 18.1 0.275
F06 17.0 0.375
F01 17.2 0.375
F05 19.6 0.275
F07 16.9 0.550
F02 14.2 0.800
F08 21.4 0.175
F03 14.4 0.850
F04 19.7 0.475
F11 19.0 0.675
Degrees of freedom: 108 total; 54 residual
Residual standard error: 1.31
> summary(fm1Orth.lis)
Call:
Model: distance ~ age | Subject
Data: Orthodont
Coefficients:
(Intercept)
Estimate Std. Error t value Pr(>|t|)
M16 17.0 3.29 5.155 3.70e-06
M05 13.7 3.29 4.151 1.18e-04
M02 14.9 3.29 4.516 3.46e-05
M11 20.1 3.29 6.098 1.19e-07
M07 15.0 3.29 4.547 3.12e-05
M08 19.8 3.29 6.006 1.67e-07
M03 16.0 3.29 4.866 1.03e-05
M12 13.2 3.29 4.030 1.76e-04
M13 2.8 3.29 0.852 3.98e-01
M14 19.1 3.29 5.809 3.45e-07
M09 14.4 3.29 4.379 5.51e-05
M15 13.5 3.29 4.106 1.37e-04
M06 19.0 3.29 5.763 4.08e-07
M04 24.7 3.29 7.512 6.08e-10
M01 17.3 3.29 5.261 2.52e-06
M10 21.2 3.29 6.463 3.07e-08
F10 13.5 3.29 4.121 1.31e-04
F09 18.1 3.29 5.505 1.05e-06
F06 17.0 3.29 5.170 3.50e-06
F01 17.2 3.29 5.246 2.67e-06
F05 19.6 3.29 5.961 1.97e-07
F07 16.9 3.29 5.155 3.70e-06
F02 14.2 3.29 4.319 6.76e-05
F08 21.4 3.29 6.523 2.44e-08
F03 14.4 3.29 4.379 5.51e-05
F04 19.7 3.29 5.976 1.86e-07
F11 19.0 3.29 5.763 4.08e-07
age
Estimate Std. Error t value Pr(>|t|)
M16 0.550 0.293 1.878 6.58e-02
M05 0.850 0.293 2.902 5.36e-03
M02 0.775 0.293 2.646 1.07e-02
M11 0.325 0.293 1.109 2.72e-01
M07 0.800 0.293 2.731 8.51e-03
M08 0.375 0.293 1.280 2.06e-01
M03 0.750 0.293 2.560 1.33e-02
M12 1.000 0.293 3.414 1.22e-03
M13 1.950 0.293 6.657 1.49e-08
M14 0.525 0.293 1.792 7.87e-02
M09 0.975 0.293 3.328 1.58e-03
M15 1.125 0.293 3.840 3.25e-04
M06 0.675 0.293 2.304 2.51e-02
M04 0.175 0.293 0.597 5.53e-01
M01 0.950 0.293 3.243 2.03e-03
M10 0.750 0.293 2.560 1.33e-02
F10 0.450 0.293 1.536 1.30e-01
F09 0.275 0.293 0.939 3.52e-01
F06 0.375 0.293 1.280 2.06e-01
F01 0.375 0.293 1.280 2.06e-01
F05 0.275 0.293 0.939 3.52e-01
F07 0.550 0.293 1.878 6.58e-02
F02 0.800 0.293 2.731 8.51e-03
F08 0.175 0.293 0.597 5.53e-01
F03 0.850 0.293 2.902 5.36e-03
F04 0.475 0.293 1.622 1.11e-01
F11 0.675 0.293 2.304 2.51e-02
Residual standard error: 1.31 on 54 degrees of freedom
> pairs(fm1Orth.lis, id = 0.01, adj = -0.5) # Figure 4.3
> fm2Orth.lis <- update(fm1Orth.lis, distance ~ I(age-11))
> intervals(fm2Orth.lis)
, , (Intercept)
lower est. upper
M16 21.7 23.0 24.3
M05 21.7 23.0 24.3
M02 22.1 23.4 24.7
M11 22.3 23.6 24.9
M07 22.4 23.8 25.1
M08 22.6 23.9 25.2
M03 22.9 24.2 25.6
M12 22.9 24.2 25.6
M13 22.9 24.2 25.6
M14 23.6 24.9 26.2
M09 23.8 25.1 26.4
M15 24.6 25.9 27.2
M06 25.1 26.4 27.7
M04 25.3 26.6 27.9
M01 26.4 27.8 29.1
M10 28.2 29.5 30.8
F10 17.2 18.5 19.8
F09 19.8 21.1 22.4
F06 19.8 21.1 22.4
F01 20.1 21.4 22.7
F05 21.3 22.6 23.9
F07 21.7 23.0 24.3
F02 21.7 23.0 24.3
F08 22.1 23.4 24.7
F03 22.4 23.8 25.1
F04 23.6 24.9 26.2
F11 25.1 26.4 27.7
, , I(age - 11)
lower est. upper
M16 -0.0373 0.550 1.137
M05 0.2627 0.850 1.437
M02 0.1877 0.775 1.362
M11 -0.2623 0.325 0.912
M07 0.2127 0.800 1.387
M08 -0.2123 0.375 0.962
M03 0.1627 0.750 1.337
M12 0.4127 1.000 1.587
M13 1.3627 1.950 2.537
M14 -0.0623 0.525 1.112
M09 0.3877 0.975 1.562
M15 0.5377 1.125 1.712
M06 0.0877 0.675 1.262
M04 -0.4123 0.175 0.762
M01 0.3627 0.950 1.537
M10 0.1627 0.750 1.337
F10 -0.1373 0.450 1.037
F09 -0.3123 0.275 0.862
F06 -0.2123 0.375 0.962
F01 -0.2123 0.375 0.962
F05 -0.3123 0.275 0.862
F07 -0.0373 0.550 1.137
F02 0.2127 0.800 1.387
F08 -0.4123 0.175 0.762
F03 0.2627 0.850 1.437
F04 -0.1123 0.475 1.062
F11 0.0877 0.675 1.262
> plot(intervals(fm2Orth.lis)) # Figure 4.5
> IGF
Grouped Data: conc ~ age | Lot
Lot age conc
1 1 7 4.90
2 1 7 5.68
3 1 8 5.32
4 1 8 5.50
5 1 13 4.94
6 1 13 5.19
7 1 14 5.18
8 1 14 5.67
9 1 15 5.02
10 1 15 5.88
11 1 22 5.12
12 1 23 5.24
13 1 24 5.88
14 1 27 5.40
15 1 28 5.59
16 1 28 5.77
17 1 30 5.57
18 1 34 5.86
19 1 34 5.87
20 1 35 4.65
21 1 35 5.34
22 1 36 4.93
23 1 36 5.33
24 1 36 4.99
25 1 41 3.38
26 1 42 5.44
27 1 42 5.24
28 1 43 5.39
29 2 3 5.34
30 2 3 5.27
31 2 3 5.48
32 2 6 5.15
33 2 11 4.23
34 2 11 5.77
35 2 11 5.06
36 2 12 5.33
37 2 12 5.78
38 2 13 5.01
39 2 13 4.85
40 2 13 4.94
41 2 18 5.14
42 2 24 5.43
43 2 24 5.66
44 2 25 5.62
45 2 25 5.53
46 2 26 6.20
47 2 27 5.30
48 2 27 4.09
49 2 32 5.78
50 2 32 5.66
51 2 34 5.07
52 2 38 5.45
53 2 40 4.76
54 2 42 4.81
55 2 45 4.92
56 2 46 4.32
57 2 47 3.30
58 3 1 5.88
59 3 2 5.91
60 3 5 0.86
61 3 6 5.40
62 3 7 4.94
63 3 8 5.42
64 3 13 5.40
65 3 15 5.68
66 3 15 5.71
67 3 21 9.55
68 3 21 5.94
69 3 21 6.17
70 3 22 5.34
71 3 22 8.14
72 3 27 5.51
73 3 28 5.31
74 3 28 4.81
75 3 28 5.26
76 3 29 4.72
77 3 30 5.08
78 3 30 3.99
79 3 33 4.87
80 3 34 4.92
81 3 34 6.13
82 3 35 6.30
83 3 36 5.97
84 3 37 5.98
85 3 41 6.68
86 3 42 5.33
87 3 43 6.08
88 3 44 4.76
89 3 47 5.31
90 3 47 6.66
91 3 48 5.52
92 3 49 5.48
93 3 50 5.10
94 4 5 5.12
95 4 5 5.08
96 4 5 4.63
97 4 5 5.38
98 4 7 5.78
99 4 9 9.34
100 4 11 5.58
101 4 11 5.19
102 4 12 5.25
103 4 12 5.44
104 4 14 5.31
105 4 14 4.71
106 4 14 5.67
107 4 14 4.65
108 4 14 5.05
109 4 15 4.23
110 4 19 5.02
111 4 19 4.98
112 4 20 5.08
113 4 20 4.84
114 4 22 4.84
115 4 22 5.53
116 4 25 5.85
117 4 25 5.32
118 4 26 5.47
119 5 1 5.49
120 5 2 5.43
121 5 6 5.02
122 5 6 5.29
123 5 7 6.25
124 5 9 4.63
125 5 10 5.18
126 5 15 5.17
127 5 15 4.98
128 5 15 5.38
129 5 15 3.76
130 5 17 5.63
131 5 21 6.12
132 5 22 4.00
133 5 23 6.53
134 5 24 4.67
135 5 24 5.55
136 5 24 5.62
137 5 29 4.58
138 5 30 5.41
139 5 35 4.84
140 5 37 4.83
141 5 37 5.36
142 5 37 4.81
143 5 37 5.35
144 5 42 5.46
145 5 43 5.09
146 5 44 4.78
147 5 44 4.44
148 5 45 4.67
149 5 48 4.98
150 6 2 4.56
151 6 3 5.83
152 6 3 5.27
153 6 4 4.90
154 7 1 4.94
155 7 2 4.78
156 7 3 5.42
157 7 4 5.42
158 7 5 5.38
159 7 7 5.55
160 7 10 5.81
161 7 10 5.62
162 7 11 6.08
163 7 15 4.80
164 7 16 5.32
165 7 17 4.95
166 7 17 5.44
167 7 18 5.48
168 7 21 5.26
169 7 22 5.21
170 7 23 4.65
171 7 24 4.62
172 7 24 5.15
173 7 26 4.71
174 7 27 5.02
175 7 29 5.38
176 7 31 5.34
177 7 31 5.10
178 7 32 5.69
179 7 36 5.00
180 7 37 5.02
181 7 38 9.74
182 7 38 9.60
183 7 39 5.58
184 7 42 4.94
185 7 43 4.66
186 7 43 5.23
187 7 45 5.62
188 7 45 5.53
189 7 45 5.45
190 7 45 4.63
191 7 47 5.01
192 7 50 5.43
193 8 1 6.17
194 8 1 5.57
195 8 2 4.82
196 8 3 5.84
197 8 6 5.55
198 8 9 5.17
199 8 9 6.50
200 8 9 5.36
201 9 4 5.47
202 9 4 5.57
203 9 5 5.36
204 9 7 4.93
205 9 8 5.49
206 9 11 3.25
207 9 13 5.53
208 9 13 4.91
209 9 13 5.74
210 9 14 4.95
211 9 15 5.07
212 9 19 5.54
213 9 20 5.29
214 9 21 4.59
215 9 25 5.66
216 9 26 4.69
217 9 26 5.18
218 9 27 5.19
219 9 27 5.35
220 9 29 5.28
221 9 29 5.50
222 9 29 5.00
223 9 30 5.47
224 9 33 5.55
225 9 34 5.75
226 9 35 5.41
227 9 35 5.65
228 9 35 5.25
229 9 36 5.81
230 9 40 4.71
231 9 41 4.95
232 10 4 6.00
233 10 5 5.74
234 10 6 5.68
235 10 6 5.83
236 10 11 5.30
237 10 13 5.63
> plot(IGF) # Figure 4.6
> fm1IGF.lis <- lmList(IGF)
> coef(fm1IGF.lis)
(Intercept) age
9 5.10 0.00573
6 4.63 0.17000
1 5.49 -0.00779
10 6.05 -0.04733
2 5.48 -0.01443
8 5.59 0.00606
5 5.37 -0.00951
4 5.58 -0.01666
3 5.28 0.01008
7 5.21 0.00931
> plot(intervals(fm1IGF.lis)) # Figure 4.7
> fm1IGF.lm <- lm(conc ~ age, data = IGF)
> summary(fm1IGF.lm)
Call:
lm(formula = conc ~ age, data = IGF)
Residuals:
Min 1Q Median 3Q Max
-4.488 -0.374 -0.009 0.258 4.414
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.351059 0.103734 51.58 <2e-16 ***
age -0.000669 0.003943 -0.17 0.87
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.833 on 235 degrees of freedom
Multiple R-squared: 0.000123, Adjusted R-squared: -0.00413
F-statistic: 0.0288 on 1 and 235 DF, p-value: 0.865
> # 4.2 Fitting Linear Mixed-Effects Models with lme
>
> fm1Orth.lme <- lme(distance ~ I(age-11), data = Orthodont,
+ random = ~ I(age-11) | Subject)
> fm1Orth.lme <- lme(distance ~ I(age-11), data = Orthodont)
> fm1Orth.lme <- lme(fm2Orth.lis)
> fm1Orth.lme
Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-likelihood: -221
Fixed: distance ~ I(age - 11)
(Intercept) I(age - 11)
24.02 0.66
Random effects:
Formula: ~I(age - 11) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 2.134 (Intr)
I(age - 11) 0.226 0.503
Residual 1.310
Number of Observations: 108
Number of Groups: 27
> fm2Orth.lme <- update(fm1Orth.lme, distance~Sex*I(age-11))
> summary(fm2Orth.lme)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC logLik
451 473 -218
Random effects:
Formula: ~I(age - 11) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.83 (Intr)
I(age - 11) 0.18 0.206
Residual 1.31
Fixed effects: distance ~ Sex + I(age - 11) + Sex:I(age - 11)
Value Std.Error DF t-value p-value
(Intercept) 23.81 0.381 79 62.5 0.0000
Sex1 -1.16 0.381 25 -3.0 0.0054
I(age - 11) 0.63 0.067 79 9.4 0.0000
Sex1:I(age - 11) -0.15 0.067 79 -2.3 0.0264
Correlation:
(Intr) Sex1 I(-11)
Sex1 0.185
I(age - 11) 0.102 0.019
Sex1:I(age - 11) 0.019 0.102 0.185
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.1681 -0.3859 0.0071 0.4452 3.8495
Number of Observations: 108
Number of Groups: 27
> fitted(fm2Orth.lme, level = 0:1)
fixed Subject
1 22.6 24.8
2 24.2 26.6
3 25.8 28.3
4 27.3 30.0
5 22.6 21.3
6 24.2 22.8
7 25.8 24.3
8 27.3 25.8
9 22.6 22.0
10 24.2 23.6
11 25.8 25.1
12 27.3 26.6
13 22.6 24.5
14 24.2 25.8
15 25.8 27.0
16 27.3 28.3
17 22.6 20.9
18 24.2 22.5
19 25.8 24.0
20 27.3 25.6
21 22.6 23.9
22 24.2 25.4
23 25.8 27.0
24 27.3 28.5
25 22.6 21.6
26 24.2 23.1
27 25.8 24.7
28 27.3 26.2
29 22.6 22.0
30 24.2 23.3
31 25.8 24.6
32 27.3 26.0
33 22.6 22.6
34 24.2 24.3
35 25.8 26.0
36 27.3 27.6
37 22.6 26.5
38 24.2 28.1
39 25.8 29.8
40 27.3 31.5
41 22.6 21.8
42 24.2 23.1
43 25.8 24.4
44 27.3 25.7
45 22.6 21.8
46 24.2 23.5
47 25.8 25.2
48 27.3 26.8
49 22.6 21.2
50 24.2 23.3
51 25.8 25.5
52 27.3 27.7
53 22.6 22.7
54 24.2 24.2
55 25.8 25.6
56 27.3 27.0
57 22.6 23.1
58 24.2 24.9
59 25.8 26.7
60 27.3 28.5
61 22.6 21.1
62 24.2 22.5
63 25.8 23.9
64 27.3 25.3
65 21.2 20.2
66 22.2 21.1
67 23.1 21.9
68 24.1 22.8
69 21.2 21.3
70 22.2 22.4
71 23.1 23.6
72 24.1 24.7
73 21.2 21.9
74 22.2 23.1
75 23.1 24.2
76 24.1 25.4
77 21.2 23.1
78 22.2 24.1
79 23.1 25.1
80 24.1 26.1
81 21.2 21.3
82 22.2 22.2
83 23.1 23.0
84 24.1 23.9
85 21.2 20.0
86 22.2 20.9
87 23.1 21.7
88 24.1 22.6
89 21.2 21.5
90 22.2 22.5
91 23.1 23.5
92 24.1 24.5
93 21.2 22.0
94 22.2 22.9
95 23.1 23.7
96 24.1 24.5
97 21.2 20.1
98 22.2 20.9
99 23.1 21.7
100 24.1 22.5
101 21.2 17.7
102 22.2 18.6
103 23.1 19.4
104 24.1 20.2
105 21.2 24.2
106 22.2 25.4
107 23.1 26.5
108 24.1 27.7
> resid(fm2Orth.lme, level = 1)
M01 M01 M01 M01 M02 M02 M02
1.15428 -1.57649 0.69275 0.96198 0.22522 -0.29641 -1.31803
M02 M03 M03 M03 M03 M04 M04
0.66034 0.96689 -1.06449 -1.09588 0.87274 1.03549 1.74867
M04 M04 M05 M05 M05 M05 M06
-0.53814 -1.32495 -0.90249 1.04571 -1.50610 0.44210 0.61473
M06 M06 M06 M07 M07 M07 M07
0.06728 0.01983 -0.02762 0.42649 -1.11840 -0.16330 0.29181
M08 M08 M08 M08 M09 M09 M09
2.00813 -1.81291 -0.13395 -0.45500 0.39248 -3.78229 5.04295
M09 M10 M10 M10 M10 M11 M11
-1.63182 1.02728 -0.14284 1.18705 0.01693 1.18276 -0.10495
M11 M11 M12 M12 M12 M12 M13
-0.89267 -0.68038 -0.34919 -0.01420 -1.17920 1.15579 -4.15031
M13 M13 M13 M14 M14 M14 M14
1.17692 0.50416 1.83139 -0.22716 1.34520 -0.08244 -1.01008
M15 M15 M15 M15 M16 M16 M16
-0.13140 -0.40616 -0.68091 1.54433 0.87681 -1.01465 -0.40610
M16 F01 F01 F01 F01 F02 F02
-0.29756 0.79027 -1.07931 -0.44889 0.18152 -0.27124 -0.91092
F02 F02 F03 F03 F03 F03 F04
0.44940 0.80973 -1.36869 0.94509 0.25887 0.57265 0.40409
F04 F04 F04 F05 F05 F05 F05
0.38858 -0.12694 0.35754 0.15965 0.81049 -0.53868 -0.38784
F06 F06 F06 F06 F07 F07 F07
0.00168 0.13870 -0.72427 -0.08725 0.04484 0.03879 -0.46727
F07 F08 F08 F08 F08 F09 F09
0.52667 0.95185 0.13632 -0.17921 -0.49475 -0.07189 0.11859
F09 F09 F10 F10 F10 F10 F11
0.30906 -1.00047 -1.22334 0.44296 -0.39073 -0.72443 0.28277
F11 F11 F11
-0.37929 1.45866 0.29661
attr(,"label")
[1] "Residuals (mm)"
> resid(fm2Orth.lme, level = 1, type = "pearson")
M01 M01 M01 M01 M02 M02 M02
0.88111 -1.20339 0.52880 0.73431 0.17192 -0.22626 -1.00610
M02 M03 M03 M03 M03 M04 M04
0.50406 0.73806 -0.81257 -0.83652 0.66619 0.79042 1.33482
M04 M04 M05 M05 M05 M05 M06
-0.41078 -1.01139 -0.68890 0.79822 -1.14966 0.33747 0.46925
M06 M06 M06 M07 M07 M07 M07
0.05136 0.01514 -0.02108 0.32556 -0.85372 -0.12465 0.22275
M08 M08 M08 M08 M09 M09 M09
1.53288 -1.38386 -0.10225 -0.34732 0.29959 -2.88715 3.84946
M09 M10 M10 M10 M10 M11 M11
-1.24562 0.78416 -0.10903 0.90612 0.01293 0.90284 -0.08012
M11 M11 M12 M12 M12 M12 M13
-0.68140 -0.51936 -0.26655 -0.01084 -0.90013 0.88226 -3.16808
M13 M13 M13 M14 M14 M14 M14
0.89839 0.38484 1.39796 -0.17340 1.02684 -0.06293 -0.77103
M15 M15 M15 M15 M16 M16 M16
-0.10030 -0.31003 -0.51977 1.17884 0.66930 -0.77452 -0.30999
M16 F01 F01 F01 F01 F02 F02
-0.22714 0.60324 -0.82388 -0.34266 0.13856 -0.20705 -0.69534
F02 F02 F03 F03 F03 F03 F04
0.34305 0.61809 -1.04477 0.72142 0.19761 0.43712 0.30846
F04 F04 F04 F05 F05 F05 F05
0.29661 -0.09690 0.27293 0.12187 0.61867 -0.41119 -0.29605
F06 F06 F06 F06 F07 F07 F07
0.00128 0.10588 -0.55286 -0.06660 0.03423 0.02961 -0.35668
F07 F08 F08 F08 F08 F09 F09
0.40203 0.72658 0.10406 -0.13680 -0.37766 -0.05488 0.09052
F09 F09 F10 F10 F10 F10 F11
0.23592 -0.76369 -0.93382 0.33813 -0.29826 -0.55298 0.21585
F11 F11 F11
-0.28952 1.11345 0.22641
attr(,"label")
[1] "Standardized residuals"
> newOrth <- data.frame(Subject = rep(c("M11","F03"), c(3, 3)),
+ Sex = rep(c("Male", "Female"), c(3, 3)),
+ age = rep(16:18, 2))
> predict(fm2Orth.lme, newdata = newOrth)
M11 M11 M11 F03 F03 F03
27.0 27.6 28.3 26.6 27.2 27.8
attr(,"label")
[1] "Predicted values (mm)"
> predict(fm2Orth.lme, newdata = newOrth, level = 0:1)
Subject predict.fixed predict.Subject
1 M11 28.9 27.0
2 M11 29.7 27.6
3 M11 30.5 28.3
4 F03 25.0 26.6
5 F03 25.5 27.2
6 F03 26.0 27.8
> fm2Orth.lmeM <- update(fm2Orth.lme, method = "ML")
> summary(fm2Orth.lmeM)
Linear mixed-effects model fit by maximum likelihood
Data: Orthodont
AIC BIC logLik
444 465 -214
Random effects:
Formula: ~I(age - 11) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.752 (Intr)
I(age - 11) 0.154 0.234
Residual 1.310
Fixed effects: distance ~ Sex + I(age - 11) + Sex:I(age - 11)
Value Std.Error DF t-value p-value
(Intercept) 23.81 0.373 79 63.8 0.0000
Sex1 -1.16 0.373 25 -3.1 0.0046
I(age - 11) 0.63 0.066 79 9.6 0.0000
Sex1:I(age - 11) -0.15 0.066 79 -2.3 0.0237
Correlation:
(Intr) Sex1 I(-11)
Sex1 0.185
I(age - 11) 0.102 0.019
Sex1:I(age - 11) 0.019 0.102 0.185
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.3360 -0.4154 0.0104 0.4917 3.8582
Number of Observations: 108
Number of Groups: 27
> compOrth <-
+ compareFits(coef(fm2Orth.lis), coef(fm1Orth.lme))
> compOrth
, , (Intercept)
coef(fm2Orth.lis) coef(fm1Orth.lme)
M16 23.0 23.1
M05 23.0 23.1
M02 23.4 23.5
M11 23.6 23.6
M07 23.8 23.8
M08 23.9 23.8
M03 24.2 24.2
M12 24.2 24.3
M13 24.2 24.4
M14 24.9 24.8
M09 25.1 25.1
M15 25.9 25.8
M06 26.4 26.2
M04 26.6 26.3
M01 27.8 27.4
M10 29.5 29.0
F10 18.5 19.0
F09 21.1 21.3
F06 21.1 21.4
F01 21.4 21.6
F05 22.6 22.7
F07 23.0 23.1
F02 23.0 23.1
F08 23.4 23.4
F03 23.8 23.8
F04 24.9 24.8
F11 26.4 26.2
, , I(age - 11)
coef(fm2Orth.lis) coef(fm1Orth.lme)
M16 0.550 0.591
M05 0.850 0.686
M02 0.775 0.675
M11 0.325 0.541
M07 0.800 0.695
M08 0.375 0.565
M03 0.750 0.696
M12 1.000 0.775
M13 1.950 1.074
M14 0.525 0.646
M09 0.975 0.796
M15 1.125 0.868
M06 0.675 0.743
M04 0.175 0.594
M01 0.950 0.876
M10 0.750 0.871
F10 0.450 0.410
F09 0.275 0.442
F06 0.375 0.474
F01 0.375 0.482
F05 0.275 0.492
F07 0.550 0.591
F02 0.800 0.670
F08 0.175 0.486
F03 0.850 0.711
F04 0.475 0.630
F11 0.675 0.743
> plot(compOrth, mark = fixef(fm1Orth.lme)) # Figure 4.8
> ## Figure 4.9
> plot(comparePred(fm2Orth.lis, fm1Orth.lme, length.out = 2),
+ layout = c(8,4), between = list(y = c(0, 0.5, 0)))
> plot(compareFits(ranef(fm2Orth.lme), ranef(fm2Orth.lmeM)),
+ mark = c(0, 0))
> fm4Orth.lm <- lm(distance ~ Sex * I(age-11), Orthodont)
> summary(fm4Orth.lm)
Call:
lm(formula = distance ~ Sex * I(age - 11), data = Orthodont)
Residuals:
Min 1Q Median 3Q Max
-5.616 -1.322 -0.168 1.330 5.247
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.8082 0.2210 107.73 < 2e-16 ***
Sex1 -1.1605 0.2210 -5.25 8.1e-07 ***
I(age - 11) 0.6320 0.0988 6.39 4.7e-09 ***
Sex1:I(age - 11) -0.1524 0.0988 -1.54 0.13
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.26 on 104 degrees of freedom
Multiple R-squared: 0.423, Adjusted R-squared: 0.406
F-statistic: 25.4 on 3 and 104 DF, p-value: 2.11e-12
> anova(fm2Orth.lme, fm4Orth.lm)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Orth.lme 1 8 451 473 -218
fm4Orth.lm 2 5 496 510 -243 1 vs 2 51 <.0001
> #fm1IGF.lme <- lme(fm1IGF.lis)
> #fm1IGF.lme
> #intervals(fm1IGF.lme)
> #summary(fm1IGF.lme)
> pd1 <- pdDiag(~ age)
> pd1
Uninitialized positive definite matrix structure of class pdDiag.
> formula(pd1)
~age
> #fm2IGF.lme <- update(fm1IGF.lme, random = pdDiag(~age))
> (fm2IGF.lme <- lme(conc ~ age, IGF,
+ random = pdDiag(~age)))
Linear mixed-effects model fit by REML
Data: IGF
Log-restricted-likelihood: -297
Fixed: conc ~ age
(Intercept) age
5.36904 -0.00193
Random effects:
Formula: ~age | Lot
Structure: Diagonal
(Intercept) age Residual
StdDev: 3.62e-05 0.00537 0.822
Number of Observations: 237
Number of Groups: 10
> #anova(fm1IGF.lme, fm2IGF.lme)
> anova(fm2IGF.lme)
numDF denDF F-value p-value
(Intercept) 1 226 6439 <.0001
age 1 226 0 0.673
> #update(fm1IGF.lme, random = list(Lot = pdDiag(~ age)))
> pd2 <- pdDiag(value = diag(2), form = ~ age)
> pd2
Positive definite matrix structure of class pdDiag representing
[,1] [,2]
[1,] 1 0
[2,] 0 1
> formula(pd2)
~age
> lme(conc ~ age, IGF, pdDiag(diag(2), ~age))
Linear mixed-effects model fit by REML
Data: IGF
Log-restricted-likelihood: -297
Fixed: conc ~ age
(Intercept) age
5.36904 -0.00193
Random effects:
Formula: ~age | Lot
Structure: Diagonal
(Intercept) age Residual
StdDev: 3.12e-05 0.00537 0.822
Number of Observations: 237
Number of Groups: 10
> fm4OatsB <- lme(yield ~ nitro, data = Oats,
+ random =list(Block = pdCompSymm(~ Variety - 1)))
> summary(fm4OatsB)
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
603 614 -297
Random effects:
Formula: ~Variety - 1 | Block
Structure: Compound Symmetry
StdDev Corr
VarietyGolden Rain 18.2
VarietyMarvellous 18.2 0.635
VarietyVictory 18.2 0.635 0.635
Residual 12.9
Fixed effects: yield ~ nitro
Value Std.Error DF t-value p-value
(Intercept) 81.9 6.95 65 11.8 0
nitro 73.7 6.78 65 10.9 0
Correlation:
(Intr)
nitro -0.293
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.7438 -0.6648 0.0171 0.5430 1.8030
Number of Observations: 72
Number of Groups: 6
> corMatrix(fm4OatsB$modelStruct$reStruct$Block)[1,2]
[1] 0.635
> fm4OatsC <- lme(yield ~ nitro, data = Oats,
+ random=list(Block=pdBlocked(list(pdIdent(~ 1),
+ pdIdent(~ Variety-1)))))
> summary(fm4OatsC)
Linear mixed-effects model fit by REML
Data: Oats
AIC BIC logLik
603 614 -297
Random effects:
Composite Structure: Blocked
Block 1: (Intercept)
Formula: ~1 | Block
(Intercept)
StdDev: 14.5
Block 2: VarietyGolden Rain, VarietyMarvellous, VarietyVictory
Formula: ~Variety - 1 | Block
Structure: Multiple of an Identity
VarietyGolden Rain VarietyMarvellous VarietyVictory
StdDev: 11 11 11
Residual
StdDev: 12.9
Fixed effects: yield ~ nitro
Value Std.Error DF t-value p-value
(Intercept) 81.9 6.95 65 11.8 0
nitro 73.7 6.78 65 10.9 0
Correlation:
(Intr)
nitro -0.293
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.7438 -0.6648 0.0171 0.5430 1.8030
Number of Observations: 72
Number of Groups: 6
> ## establishing the desired parameterization for contrasts
> options(contrasts = c("contr.treatment", "contr.poly"))
> fm1Assay <- lme(logDens ~ sample * dilut, Assay,
+ random = pdBlocked(list(pdIdent(~ 1), pdIdent(~ sample - 1),
+ pdIdent(~ dilut - 1))))
> fm1Assay
Linear mixed-effects model fit by REML
Data: Assay
Log-restricted-likelihood: 38.5
Fixed: logDens ~ sample * dilut
(Intercept) sampleb samplec sampled
-0.18279 0.08075 0.13398 0.20770
samplee samplef dilut2 dilut3
-0.02367 0.07357 0.20443 0.40586
dilut4 dilut5 sampleb:dilut2 samplec:dilut2
0.57319 0.72064 0.00894 -0.00850
sampled:dilut2 samplee:dilut2 samplef:dilut2 sampleb:dilut3
0.00108 -0.04192 0.01935 -0.02507
samplec:dilut3 sampled:dilut3 samplee:dilut3 samplef:dilut3
0.01865 0.00399 -0.02771 0.05432
sampleb:dilut4 samplec:dilut4 sampled:dilut4 samplee:dilut4
0.06079 0.00526 -0.01649 0.04980
samplef:dilut4 sampleb:dilut5 samplec:dilut5 sampled:dilut5
0.06337 -0.04576 -0.07260 -0.17776
samplee:dilut5 samplef:dilut5
0.01361 0.00402
Random effects:
Composite Structure: Blocked
Block 1: (Intercept)
Formula: ~1 | Block
(Intercept)
StdDev: 0.00981
Block 2: samplea, sampleb, samplec, sampled, samplee, samplef
Formula: ~sample - 1 | Block
Structure: Multiple of an Identity
samplea sampleb samplec sampled samplee samplef
StdDev: 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253
Block 3: dilut1, dilut2, dilut3, dilut4, dilut5
Formula: ~dilut - 1 | Block
Structure: Multiple of an Identity
dilut1 dilut2 dilut3 dilut4 dilut5 Residual
StdDev: 0.00913 0.00913 0.00913 0.00913 0.00913 0.0416
Number of Observations: 60
Number of Groups: 2
> anova(fm1Assay)
numDF denDF F-value p-value
(Intercept) 1 29 538 <.0001
sample 5 29 11 <.0001
dilut 4 29 421 <.0001
sample:dilut 20 29 2 0.119
> formula(Oxide)
Thickness ~ 1 | Lot/Wafer
> fm1Oxide <- lme(Thickness ~ 1, Oxide)
> fm1Oxide
Linear mixed-effects model fit by REML
Data: Oxide
Log-restricted-likelihood: -227
Fixed: Thickness ~ 1
(Intercept)
2000
Random effects:
Formula: ~1 | Lot
(Intercept)
StdDev: 11.4
Formula: ~1 | Wafer %in% Lot
(Intercept) Residual
StdDev: 5.99 3.55
Number of Observations: 72
Number of Groups:
Lot Wafer %in% Lot
8 24
> intervals(fm1Oxide, which = "var-cov")
Approximate 95% confidence intervals
Random Effects:
Level: Lot
lower est. upper
sd((Intercept)) 6.39 11.4 20.3
Level: Wafer
lower est. upper
sd((Intercept)) 4.06 5.99 8.82
Within-group standard error:
lower est. upper
2.90 3.55 4.33
> fm2Oxide <- update(fm1Oxide, random = ~ 1 | Lot)
> anova(fm1Oxide, fm2Oxide)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Oxide 1 4 462 471 -227
fm2Oxide 2 3 497 504 -246 1 vs 2 37.1 <.0001
> coef(fm1Oxide, level = 1)
(Intercept)
1 1997
2 1989
3 2001
4 1996
5 2014
6 2020
7 1992
8 1994
> coef(fm1Oxide, level = 2)
(Intercept)
1/1 2003
1/2 1985
1/3 2001
2/1 1990
2/2 1988
2/3 1986
3/1 2002
3/2 2000
3/3 2000
4/1 1996
4/2 1999
4/3 1991
5/1 2009
5/2 2017
5/3 2019
6/1 2031
6/2 2022
6/3 2011
7/1 1990
7/2 1991
7/3 1992
8/1 1994
8/2 1995
8/3 1991
> ranef(fm1Oxide, level = 1:2)
Level: Lot
(Intercept)
1 -3.463
2 -11.222
3 0.869
4 -4.471
5 13.463
6 19.408
7 -8.199
8 -6.385
Level: Wafer %in% Lot
(Intercept)
1/1 6.5460
1/2 -11.9589
1/3 4.4567
2/1 0.6586
2/2 -0.8337
2/3 -2.9230
3/1 1.4728
3/2 -0.6164
3/3 -0.6164
4/1 -0.0135
4/2 3.2696
4/3 -4.4905
5/1 -4.4318
5/2 3.0298
5/3 5.1191
6/1 11.7350
6/2 2.1841
6/3 -8.5607
7/1 -1.7494
7/2 -0.5556
7/3 0.0414
8/1 -0.0902
8/2 1.4021
8/3 -3.0749
> fm1Wafer <- lme(current ~ voltage + I(voltage^2), data = Wafer,
+ random = list(Wafer = pdDiag(~voltage + I(voltage^2)),
+ Site = pdDiag(~voltage + I(voltage^2))))
> ## IGNORE_RDIFF_BEGIN
> summary(fm1Wafer)
Linear mixed-effects model fit by REML
Data: Wafer
AIC BIC logLik
-282 -242 151
Random effects:
Formula: ~voltage + I(voltage^2) | Wafer
Structure: Diagonal
(Intercept) voltage I(voltage^2)
StdDev: 2.81e-05 0.187 0.025
Formula: ~voltage + I(voltage^2) | Site %in% Wafer
Structure: Diagonal
(Intercept) voltage I(voltage^2) Residual
StdDev: 8.17e-06 0.136 2.45e-08 0.115
Fixed effects: current ~ voltage + I(voltage^2)
Value Std.Error DF t-value p-value
(Intercept) -4.46 0.0513 318 -87.0 0
voltage 5.90 0.0927 318 63.7 0
I(voltage^2) 1.17 0.0230 318 51.0 0
Correlation:
(Intr) voltag
voltage -0.735
I(voltage^2) 0.884 -0.698
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.8966 -0.5354 0.0249 0.7985 1.7777
Number of Observations: 400
Number of Groups:
Wafer Site %in% Wafer
10 80
> ## IGNORE_RDIFF_END
> fitted(fm1Wafer, level = 0)
1 1 1 1 1 1 1 1 1 1
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
1 1 1 1 1 1 1 1 1 1
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
1 1 1 1 1 1 1 1 1 1
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
1 1 1 1 1 1 1 1 1 1
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
2 2 2 2 2 2 2 2 2 2
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
2 2 2 2 2 2 2 2 2 2
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
2 2 2 2 2 2 2 2 2 2
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
2 2 2 2 2 2 2 2 2 2
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
3 3 3 3 3 3 3 3 3 3
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
3 3 3 3 3 3 3 3 3 3
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
3 3 3 3 3 3 3 3 3 3
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
3 3 3 3 3 3 3 3 3 3
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
4 4 4 4 4 4 4 4 4 4
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
4 4 4 4 4 4 4 4 4 4
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
4 4 4 4 4 4 4 4 4 4
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
4 4 4 4 4 4 4 4 4 4
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
5 5 5 5 5 5 5 5 5 5
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
5 5 5 5 5 5 5 5 5 5
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
5 5 5 5 5 5 5 5 5 5
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
5 5 5 5 5 5 5 5 5 5
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
6 6 6 6 6 6 6 6 6 6
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
6 6 6 6 6 6 6 6 6 6
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
6 6 6 6 6 6 6 6 6 6
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
6 6 6 6 6 6 6 6 6 6
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
7 7 7 7 7 7 7 7 7 7
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
7 7 7 7 7 7 7 7 7 7
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
7 7 7 7 7 7 7 7 7 7
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
7 7 7 7 7 7 7 7 7 7
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
8 8 8 8 8 8 8 8 8 8
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
8 8 8 8 8 8 8 8 8 8
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
8 8 8 8 8 8 8 8 8 8
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
8 8 8 8 8 8 8 8 8 8
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
9 9 9 9 9 9 9 9 9 9
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
9 9 9 9 9 9 9 9 9 9
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
9 9 9 9 9 9 9 9 9 9
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
9 9 9 9 9 9 9 9 9 9
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
10 10 10 10 10 10 10 10 10 10
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
10 10 10 10 10 10 10 10 10 10
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
10 10 10 10 10 10 10 10 10 10
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
10 10 10 10 10 10 10 10 10 10
1.01 4.31 7.98 12.03 16.45 1.01 4.31 7.98 12.03 16.45
attr(,"label")
[1] "Fitted values (mA)"
> resid(fm1Wafer, level = 1:2)
Wafer Site
1 0.061492 0.068062
2 -0.189869 -0.180013
3 -0.015086 -0.001944
4 0.103762 0.120189
5 -0.053726 -0.034014
6 0.192612 0.073736
7 0.044131 -0.134183
8 0.275914 0.038163
9 0.431762 0.134573
10 0.306274 -0.050353
11 0.084612 0.060177
12 -0.150069 -0.186722
13 0.045314 -0.003556
14 0.185762 0.124675
15 0.054274 -0.019031
16 0.042212 0.073671
17 -0.237069 -0.189880
18 -0.077086 -0.014167
19 0.035762 0.114410
20 -0.121726 -0.027348
21 0.092692 0.076696
22 -0.149069 -0.173062
23 0.033314 0.001324
24 0.159762 0.119774
25 0.014274 -0.033712
26 -0.057768 0.111841
27 -0.453669 -0.199256
28 -0.379286 -0.040068
29 -0.339838 0.084185
30 -0.553726 -0.044899
31 0.047012 0.088048
32 -0.238069 -0.176514
33 -0.090886 -0.008812
34 0.007762 0.110354
35 -0.165726 -0.042616
36 0.079392 0.084841
37 -0.172269 -0.164095
38 -0.006486 0.004413
39 0.101762 0.115385
40 -0.063726 -0.047378
41 0.038702 0.065476
42 -0.209573 -0.169412
43 -0.048411 0.005137
44 0.036789 0.103724
45 -0.117373 -0.037052
46 0.266102 0.151852
47 0.114027 -0.057349
48 0.302789 0.074288
49 0.390789 0.105163
50 0.226627 -0.116125
51 0.299502 0.205135
52 0.129627 -0.011925
53 0.280989 0.092254
54 0.324789 0.088870
55 0.120627 -0.162477
56 -0.032838 0.072449
57 -0.343973 -0.186043
58 -0.225411 -0.014838
59 -0.171211 0.092005
60 -0.353373 -0.037514
61 0.262902 0.160786
62 0.095827 -0.057348
63 0.274189 0.069956
64 0.356789 0.101497
65 0.188627 -0.117724
66 0.000342 0.087867
67 -0.298573 -0.167286
68 -0.178211 -0.003161
69 -0.127211 0.091601
70 -0.315373 -0.052799
71 0.100502 0.127285
72 -0.153973 -0.113800
73 -0.025611 0.027954
74 0.022789 0.089745
75 -0.169373 -0.089027
76 0.032102 0.097186
77 -0.244373 -0.146748
78 -0.120611 0.009556
79 -0.071211 0.091498
80 -0.261373 -0.066123
81 -0.004099 0.052717
82 -0.278076 -0.192852
83 -0.127696 -0.014064
84 -0.029418 0.112622
85 -0.197444 -0.026995
86 0.052321 0.089249
87 -0.208276 -0.152884
88 -0.067296 0.006561
89 0.014582 0.106902
90 -0.171444 -0.060659
91 0.118641 0.062782
92 -0.064476 -0.148264
93 0.134904 0.023187
94 0.266582 0.126935
95 0.120556 -0.047019
96 -0.041079 0.051265
97 -0.346676 -0.208160
98 -0.212496 -0.027807
99 -0.121418 0.109442
100 -0.297444 -0.020411
101 0.128041 0.079868
102 -0.066076 -0.138336
103 0.121104 0.024758
104 0.240582 0.120149
105 0.088556 -0.055963
106 -0.091839 0.070304
107 -0.452476 -0.209261
108 -0.361896 -0.037608
109 -0.311418 0.093941
110 -0.519444 -0.033013
111 0.286041 0.146703
112 0.154524 -0.054483
113 0.353704 0.075028
114 0.468582 0.120237
115 0.298556 -0.119458
116 0.253641 0.183845
117 0.066124 -0.038569
118 0.211104 0.071514
119 0.274582 0.100094
120 0.062556 -0.146829
121 0.113168 0.059522
122 -0.082704 -0.163173
123 0.123749 0.016457
124 0.262907 0.128791
125 0.124569 -0.036370
126 0.199348 0.075597
127 0.057096 -0.128531
128 0.288549 0.041047
129 0.444907 0.135529
130 0.316569 -0.054685
131 0.010568 0.105606
132 -0.309104 -0.166546
133 -0.198251 -0.008174
134 -0.139093 0.098502
135 -0.349431 -0.064316
136 0.000368 0.076116
137 -0.314704 -0.201082
138 -0.178051 -0.026555
139 -0.083093 0.106277
140 -0.251431 -0.024187
141 0.016268 0.116152
142 -0.315904 -0.166078
143 -0.212251 -0.012483
144 -0.155093 0.094617
145 -0.363431 -0.063779
146 0.004348 0.054446
147 -0.286504 -0.211357
148 -0.125651 -0.025456
149 -0.009093 0.116151
150 -0.161431 -0.011138
151 0.096848 0.080552
152 -0.138304 -0.162749
153 0.039349 0.006756
154 0.158907 0.118165
155 0.006569 -0.042321
156 0.118788 0.080347
157 -0.096904 -0.154565
158 0.090949 0.014067
159 0.218907 0.122804
160 0.068569 -0.046754
161 -0.029651 0.042434
162 -0.299821 -0.191694
163 -0.157165 -0.012996
164 -0.067684 0.112527
165 -0.246778 -0.030524
166 0.116949 0.129128
167 -0.114421 -0.096153
168 0.013235 0.037592
169 0.072316 0.102762
170 -0.146778 -0.110243
171 0.197149 0.101805
172 0.049179 -0.093837
173 0.245235 0.054547
174 0.362316 0.123955
175 0.195222 -0.090810
176 0.048749 0.058063
177 -0.177021 -0.163051
178 -0.010365 0.008261
179 0.094316 0.117599
180 -0.072778 -0.044839
181 0.214149 0.102694
182 0.073779 -0.093404
183 0.277635 0.054723
184 0.402316 0.123676
185 0.249222 -0.085146
186 -0.092031 0.056118
187 -0.426021 -0.203798
188 -0.326965 -0.030668
189 -0.271684 0.098687
190 -0.478778 -0.034333
191 0.187949 0.129497
192 0.004979 -0.082699
193 0.168635 0.051730
194 0.256316 0.110185
195 0.069222 -0.106135
196 0.095349 0.120157
197 -0.145621 -0.108410
198 -0.019765 0.029849
199 0.040316 0.102333
200 -0.174778 -0.100357
201 0.115311 0.075105
202 -0.097595 -0.157904
203 0.094646 0.014234
204 0.223635 0.123120
205 0.077572 -0.043047
206 0.121051 0.100980
207 -0.110195 -0.140302
208 0.058846 0.018704
209 0.165635 0.115457
210 -0.004428 -0.064642
211 0.079591 0.081229
212 -0.172795 -0.170338
213 -0.001954 0.001323
214 0.113635 0.117730
215 -0.046428 -0.041514
216 0.007011 0.076714
217 -0.304595 -0.200040
218 -0.163954 -0.024547
219 -0.066365 0.107893
220 -0.234428 -0.025319
221 0.066991 0.085934
222 -0.202595 -0.174180
223 -0.042754 -0.004867
224 0.065635 0.112994
225 -0.096428 -0.039598
226 -0.020549 0.093776
227 -0.371395 -0.199907
228 -0.261754 -0.033103
229 -0.188365 0.097449
230 -0.376428 -0.033452
231 0.124251 0.092105
232 -0.097195 -0.145414
233 0.081646 0.017355
234 0.199635 0.119271
235 0.039572 -0.056865
236 0.104871 0.083043
237 -0.123995 -0.156738
238 0.055046 0.011389
239 0.173635 0.119064
240 0.017572 -0.047914
241 0.227356 0.097058
242 0.136724 -0.058724
243 0.348539 0.087942
244 0.457002 0.131256
245 0.268913 -0.121982
246 -0.049644 -0.001886
247 -0.250476 -0.178840
248 -0.082661 0.012853
249 0.007002 0.126395
250 -0.185087 -0.041815
251 0.491556 0.164445
252 0.535924 0.045257
253 0.814739 0.160517
254 0.963002 0.145224
255 0.798913 -0.182420
256 0.035556 -0.000644
257 -0.106476 -0.160777
258 0.103139 0.030738
259 0.229002 0.138501
260 0.066913 -0.041688
261 0.084356 0.047445
262 -0.064476 -0.119844
263 0.122139 0.048316
264 0.219002 0.126723
265 0.030913 -0.079821
266 -0.102844 -0.008156
267 -0.348676 -0.206645
268 -0.197861 -0.008486
269 -0.112998 0.123721
270 -0.311087 -0.027023
271 -0.104044 0.032614
272 -0.381676 -0.176689
273 -0.275861 -0.002545
274 -0.234998 0.106647
275 -0.471087 -0.061112
276 -0.127844 0.030339
277 -0.422076 -0.184802
278 -0.325461 -0.009095
279 -0.292998 0.102459
280 -0.531087 -0.056538
281 0.272748 0.047840
282 0.262060 -0.075302
283 0.546385 0.096569
284 0.718724 0.156454
285 0.586276 -0.088447
286 0.249948 0.062457
287 0.206660 -0.074577
288 0.464785 0.089803
289 0.616724 0.147996
290 0.466276 -0.096197
291 -0.032652 0.011344
292 -0.243540 -0.177547
293 -0.075615 0.012376
294 0.014724 0.124713
295 -0.175724 -0.043737
296 -0.108452 -0.012938
297 -0.355740 -0.212470
298 -0.201215 -0.010187
299 -0.113276 0.125508
300 -0.309724 -0.023182
301 -0.096052 0.018185
302 -0.362540 -0.191185
303 -0.234015 -0.005541
304 -0.171276 0.114316
305 -0.387724 -0.045013
306 -0.123652 -0.009999
307 -0.389340 -0.218861
308 -0.245215 -0.017909
309 -0.163276 0.120856
310 -0.359724 -0.018765
311 -0.108452 0.037755
312 -0.402940 -0.183630
313 -0.300215 -0.007802
314 -0.259276 0.106241
315 -0.497724 -0.059104
316 0.285348 0.119276
317 0.217660 -0.031449
318 0.435785 0.103641
319 0.548724 0.133543
320 0.356276 -0.141940
321 0.066249 0.061990
322 -0.106937 -0.113325
323 0.058058 0.049541
324 0.133235 0.122588
325 -0.084807 -0.097583
326 0.058049 0.013390
327 -0.080137 -0.147125
328 0.128858 0.039540
329 0.251235 0.139588
330 0.077193 -0.056784
331 0.004649 0.041019
332 -0.199737 -0.145182
333 -0.044542 0.028198
334 0.029235 0.120160
335 -0.182807 -0.073697
336 0.088449 -0.002738
337 -0.008937 -0.145718
338 0.230458 0.048083
339 0.377235 0.149266
340 0.225193 -0.048369
341 0.017249 0.032907
342 -0.167737 -0.144250
343 0.000858 0.032174
344 0.085235 0.124380
345 -0.116807 -0.069833
346 -0.084751 -0.026585
347 -0.303337 -0.216088
348 -0.124142 -0.007810
349 -0.012765 0.132649
350 -0.184807 -0.010310
351 -0.104351 0.042779
352 -0.394337 -0.173642
353 -0.296142 -0.001881
354 -0.264765 0.103060
355 -0.508807 -0.067416
356 0.278649 0.082220
357 0.247263 -0.047380
358 0.498058 0.105201
359 0.635235 0.144163
360 0.469193 -0.120093
361 -0.107404 -0.012451
362 -0.354401 -0.211972
363 -0.199807 -0.009901
364 -0.112820 0.124562
365 -0.307642 -0.022784
366 0.231396 0.061385
367 0.179399 -0.075617
368 0.428793 0.088772
369 0.571180 0.146153
370 0.410358 -0.099674
371 0.162596 0.050096
372 0.066399 -0.102351
373 0.292993 0.067994
374 0.421180 0.139931
375 0.252358 -0.085141
376 -0.022804 -0.020045
377 -0.198801 -0.194662
378 0.005393 0.010912
379 0.131180 0.138078
380 -0.027642 -0.019364
381 0.015396 0.011892
382 -0.160401 -0.165658
383 0.030993 0.023985
384 0.141180 0.132419
385 -0.035642 -0.046155
386 -0.105404 0.014675
387 -0.373401 -0.193283
388 -0.246407 -0.006248
389 -0.184820 0.115377
390 -0.405642 -0.045405
391 0.164196 0.113448
392 0.015399 -0.060723
393 0.177393 0.075897
394 0.243180 0.116310
395 0.016358 -0.135886
396 -0.008404 0.037007
397 -0.216401 -0.148285
398 -0.065007 0.025815
399 0.005180 0.118707
400 -0.207642 -0.071409
> newWafer <-
+ data.frame(Wafer = rep(1, 4), voltage = c(1, 1.5, 3, 3.5))
> predict(fm1Wafer, newWafer, level = 0:1)
Wafer predict.fixed predict.Wafer
1 1 2.61 2.40
2 1 7.03 6.72
3 1 23.78 23.23
4 1 30.54 29.92
> newWafer2 <- data.frame(Wafer = rep(1, 4), Site = rep(3, 4),
+ voltage = c(1, 1.5, 3, 3.5))
> predict(fm1Wafer, newWafer2, level = 0:2)
Wafer Site predict.fixed predict.Wafer predict.Site
1 1 1/3 2.61 2.40 2.43
2 1 1/3 7.03 6.72 6.77
3 1 1/3 23.78 23.23 23.32
4 1 1/3 30.54 29.92 30.03
> # 4.3 Examining a Fitted Model
>
> plot(fm2Orth.lme, Subject~resid(.), abline = 0)
> plot(fm2Orth.lme, resid(., type = "p") ~ fitted(.) | Sex,
+ id = 0.05, adj = -0.3)
> fm3Orth.lme <-
+ update(fm2Orth.lme, weights = varIdent(form = ~ 1 | Sex))
> fm3Orth.lme
Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-likelihood: -206
Fixed: distance ~ Sex + I(age - 11) + Sex:I(age - 11)
(Intercept) SexFemale
24.969 -2.321
I(age - 11) SexFemale:I(age - 11)
0.784 -0.305
Random effects:
Formula: ~I(age - 11) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.855 (Intr)
I(age - 11) 0.157 0.394
Residual 1.630
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Sex
Parameter estimates:
Male Female
1.000 0.409
Number of Observations: 108
Number of Groups: 27
> plot(fm3Orth.lme, distance ~ fitted(.),
+ id = 0.05, adj = -0.3)
> anova(fm2Orth.lme, fm3Orth.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Orth.lme 1 8 451 473 -218
fm3Orth.lme 2 9 430 453 -206 1 vs 2 23.8 <.0001
> qqnorm(fm3Orth.lme, ~resid(.) | Sex)
> plot(fm2IGF.lme, resid(., type = "p") ~ fitted(.) | Lot,
+ layout = c(5,2))
> qqnorm(fm2IGF.lme, ~ resid(.), id = 0.05, adj = -0.75)
> plot(fm1Oxide)
> qqnorm(fm1Oxide)
> plot(fm1Wafer, resid(.) ~ voltage | Wafer)
> plot(fm1Wafer, resid(.) ~ voltage | Wafer,
+ panel = function(x, y, ...) {
+ panel.grid()
+ panel.xyplot(x, y)
+ panel.loess(x, y, lty = 2)
+ panel.abline(0, 0)
+ })
> with(Wafer,
+ coef(lm(resid(fm1Wafer) ~ cos(4.19*voltage)+sin(4.19*voltage)-1)))
cos(4.19 * voltage) sin(4.19 * voltage)
-0.0519 0.1304
> nls(resid(fm1Wafer) ~ b3*cos(w*voltage) + b4*sin(w*voltage), Wafer,
+ start = list(b3 = -0.0519, b4 = 0.1304, w = 4.19))
Nonlinear regression model
model: resid(fm1Wafer) ~ b3 * cos(w * voltage) + b4 * sin(w * voltage)
data: Wafer
b3 b4 w
-0.1117 0.0777 4.5679
residual sum-of-squares: 0.729
Number of iterations to convergence: 6
Achieved convergence tolerance: 1.12e-06
> fm2Wafer <- update(fm1Wafer,
+ . ~ . + cos(4.5679*voltage) + sin(4.5679*voltage),
+ random = list(Wafer=pdDiag(~voltage+I(voltage^2)),
+ Site=pdDiag(~voltage+I(voltage^2))))
> summary(fm2Wafer)
Linear mixed-effects model fit by REML
Data: Wafer
AIC BIC logLik
-1233 -1185 628
Random effects:
Formula: ~voltage + I(voltage^2) | Wafer
Structure: Diagonal
(Intercept) voltage I(voltage^2)
StdDev: 0.129 0.349 0.0491
Formula: ~voltage + I(voltage^2) | Site %in% Wafer
Structure: Diagonal
(Intercept) voltage I(voltage^2) Residual
StdDev: 0.0397 0.234 0.0475 0.0113
Fixed effects: current ~ voltage + I(voltage^2) + cos(4.5679 * voltage) + sin(4.5679 * voltage)
Value Std.Error DF t-value p-value
(Intercept) -4.26 0.0422 316 -100.8 0
voltage 5.62 0.1142 316 49.2 0
I(voltage^2) 1.26 0.0170 316 74.2 0
cos(4.5679 * voltage) -0.10 0.0011 316 -85.0 0
sin(4.5679 * voltage) 0.10 0.0015 316 69.4 0
Correlation:
(Intr) voltag I(v^2) c(4.*v
voltage -0.029
I(voltage^2) 0.060 -0.031
cos(4.5679 * voltage) 0.162 -0.082 0.172
sin(4.5679 * voltage) 0.200 -0.101 0.212 0.567
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.4272 -0.4032 0.0253 0.3936 2.8427
Number of Observations: 400
Number of Groups:
Wafer Site %in% Wafer
10 80
> ## IGNORE_RDIFF_BEGIN
> intervals(fm2Wafer)
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) -4.3385 -4.2554 -4.1723
voltage 5.3977 5.6224 5.8470
I(voltage^2) 1.2251 1.2585 1.2919
cos(4.5679 * voltage) -0.0978 -0.0956 -0.0933
sin(4.5679 * voltage) 0.1014 0.1043 0.1073
Random Effects:
Level: Wafer
lower est. upper
sd((Intercept)) 0.0802 0.1289 0.207
sd(voltage) 0.2135 0.3487 0.569
sd(I(voltage^2)) 0.0290 0.0491 0.083
Level: Site
lower est. upper
sd((Intercept)) 0.0220 0.0397 0.0717
sd(voltage) 0.1909 0.2344 0.2878
sd(I(voltage^2)) 0.0383 0.0475 0.0590
Within-group standard error:
lower est. upper
0.00927 0.01133 0.01383
> ## IGNORE_RDIFF_END
> qqnorm(fm2Wafer)
> qqnorm(fm2Orth.lme, ~ranef(.), id = 0.10, cex = 0.7)
> pairs(fm2Orth.lme, ~ranef(.) | Sex,
+ id = ~ Subject == "M13", adj = -0.3)
> fm2IGF.lme
Linear mixed-effects model fit by REML
Data: IGF
Log-restricted-likelihood: -297
Fixed: conc ~ age
(Intercept) age
5.36904 -0.00193
Random effects:
Formula: ~age | Lot
Structure: Diagonal
(Intercept) age Residual
StdDev: 3.62e-05 0.00537 0.822
Number of Observations: 237
Number of Groups: 10
> c(0.00031074, 0.0053722)/abs(fixef(fm2IGF.lme))
(Intercept) age
5.79e-05 2.78e+00
> fm3IGF.lme <- update(fm2IGF.lme, random = ~ age - 1)
> anova(fm2IGF.lme, fm3IGF.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2IGF.lme 1 5 605 622 -297
fm3IGF.lme 2 4 603 617 -297 1 vs 2 1.47e-07 1
> qqnorm(fm1Oxide, ~ranef(., level = 1), id=0.10)
> qqnorm(fm1Oxide, ~ranef(., level = 2), id=0.10)
> #fm3Wafer <- update(fm2Wafer,
> # random = list(Wafer = ~voltage+I(voltage^2),
> # Site = pdDiag(~voltage+I(voltage^2))),
> # control = list(msVerbose = TRUE, msMaxIter = 200)
> # )
> #fm3Wafer
> #anova(fm2Wafer, fm3Wafer)
> #fm4Wafer <- update(fm2Wafer,
> # random = list(Wafer = ~ voltage + I(voltage^2),
> # Site = pdBlocked(list(~1,
> # ~voltage+I(voltage^2) - 1))),
> # control = list(msVerbose = TRUE,
> # msMaxIter = 200))
> #fm4Wafer
> #anova(fm3Wafer, fm4Wafer)
> #qqnorm(fm4Wafer, ~ranef(., level = 2), id = 0.05,
> # cex = 0.7, layout = c(3, 1))
>
> # The next line is not in the book but is needed to get fm1Machine
>
> fm1Machine <-
+ lme(score ~ Machine, data = Machines, random = ~ 1 | Worker)
> (fm3Machine <- update(fm1Machine, random = ~Machine-1|Worker))
Linear mixed-effects model fit by REML
Data: Machines
Log-restricted-likelihood: -104
Fixed: score ~ Machine
(Intercept) MachineB MachineC
52.36 7.97 13.92
Random effects:
Formula: ~Machine - 1 | Worker
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
MachineA 4.079 MachnA MachnB
MachineB 8.625 0.803
MachineC 4.389 0.623 0.771
Residual 0.962
Number of Observations: 54
Number of Groups: 6
> # cleanup
>
> summary(warnings())
No warnings
======
ch05.R
======
> #-*- R -*-
>
> # initialization
>
> library(nlme)
> options(width = 65,
+ ## reduce platform dependence in printed output when testing
+ digits = if(nzchar(Sys.getenv("R_TESTS"))) 3 else 5)
> options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))
> pdf(file = "ch05.pdf")
> # Chapter 5 Extending the Basic Linear Mixed-Effects Models
>
> # 5.1 General Formulation of the Extended Model
>
> vf1Fixed <- varFixed(~ age)
> vf1Fixed <- Initialize(vf1Fixed, data = Orthodont)
> varWeights(vf1Fixed)
[1] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316
[11] 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
[21] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316
[31] 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
[41] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316
[51] 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
[61] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316
[71] 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
[81] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316
[91] 0.289 0.267 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
[101] 0.354 0.316 0.289 0.267 0.354 0.316 0.289 0.267
> vf1Ident <- varIdent(c(Female = 0.5), ~ 1 | Sex)
> vf1Ident <- Initialize(vf1Ident, Orthodont)
> varWeights(vf1Ident)
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Female Female Female Female Female Female Female Female
1 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
> vf2Ident <- varIdent(form = ~ 1 | Sex, fixed = c(Female = 0.5))
> vf2Ident <- Initialize(vf2Ident, Orthodont)
> varWeights(vf2Ident)
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Male Male Male Male Male Male Male Male
1 1 1 1 1 1 1 1 1
Male Female Female Female Female Female Female Female Female
1 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
Female Female Female Female Female Female Female Female Female
2 2 2 2 2 2 2 2 2
> vf3Ident <- varIdent(form = ~ 1 | Sex * age)
> vf3Ident <- Initialize(vf3Ident, Orthodont)
> varWeights(vf3Ident)
Male*8 Male*10 Male*12 Male*14 Male*8 Male*10
1 1 1 1 1 1
Male*12 Male*14 Male*8 Male*10 Male*12 Male*14
1 1 1 1 1 1
Male*8 Male*10 Male*12 Male*14 Male*8 Male*10
1 1 1 1 1 1
Male*12 Male*14 Male*8 Male*10 Male*12 Male*14
1 1 1 1 1 1
Male*8 Male*10 Male*12 Male*14 Male*8 Male*10
1 1 1 1 1 1
Male*12 Male*14 Male*8 Male*10 Male*12 Male*14
1 1 1 1 1 1
Male*8 Male*10 Male*12 Male*14 Male*8 Male*10
1 1 1 1 1 1
Male*12 Male*14 Male*8 Male*10 Male*12 Male*14
1 1 1 1 1 1
Male*8 Male*10 Male*12 Male*14 Male*8 Male*10
1 1 1 1 1 1
Male*12 Male*14 Male*8 Male*10 Male*12 Male*14
1 1 1 1 1 1
Male*8 Male*10 Male*12 Male*14 Female*8 Female*10
1 1 1 1 1 1
Female*12 Female*14 Female*8 Female*10 Female*12 Female*14
1 1 1 1 1 1
Female*8 Female*10 Female*12 Female*14 Female*8 Female*10
1 1 1 1 1 1
Female*12 Female*14 Female*8 Female*10 Female*12 Female*14
1 1 1 1 1 1
Female*8 Female*10 Female*12 Female*14 Female*8 Female*10
1 1 1 1 1 1
Female*12 Female*14 Female*8 Female*10 Female*12 Female*14
1 1 1 1 1 1
Female*8 Female*10 Female*12 Female*14 Female*8 Female*10
1 1 1 1 1 1
Female*12 Female*14 Female*8 Female*10 Female*12 Female*14
1 1 1 1 1 1
> vf1Power <- varPower(1)
> formula(vf1Power)
~fitted(.)
<environment: 0x55aa58bbc708>
> vf2Power <- varPower(fixed = 0.5)
> vf3Power <- varPower(form = ~ fitted(.) | Sex,
+ fixed = list(Male = 0.5, Female = 0))
> vf1Exp <- varExp(form = ~ age | Sex, fixed = c(Female = 0))
> vf1ConstPower <- varConstPower(power = 0.5,
+ fixed = list(const = 1))
> vf1Comb <- varComb(varIdent(c(Female = 0.5), ~ 1 | Sex),
+ varExp(1, ~ age))
> vf1Comb <- Initialize(vf1Comb, Orthodont)
> varWeights(vf1Comb)
[1] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 3.35e-04 4.54e-05
[7] 6.14e-06 8.32e-07 3.35e-04 4.54e-05 6.14e-06 8.32e-07
[13] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 3.35e-04 4.54e-05
[19] 6.14e-06 8.32e-07 3.35e-04 4.54e-05 6.14e-06 8.32e-07
[25] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 3.35e-04 4.54e-05
[31] 6.14e-06 8.32e-07 3.35e-04 4.54e-05 6.14e-06 8.32e-07
[37] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 3.35e-04 4.54e-05
[43] 6.14e-06 8.32e-07 3.35e-04 4.54e-05 6.14e-06 8.32e-07
[49] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 3.35e-04 4.54e-05
[55] 6.14e-06 8.32e-07 3.35e-04 4.54e-05 6.14e-06 8.32e-07
[61] 3.35e-04 4.54e-05 6.14e-06 8.32e-07 6.71e-04 9.08e-05
[67] 1.23e-05 1.66e-06 6.71e-04 9.08e-05 1.23e-05 1.66e-06
[73] 6.71e-04 9.08e-05 1.23e-05 1.66e-06 6.71e-04 9.08e-05
[79] 1.23e-05 1.66e-06 6.71e-04 9.08e-05 1.23e-05 1.66e-06
[85] 6.71e-04 9.08e-05 1.23e-05 1.66e-06 6.71e-04 9.08e-05
[91] 1.23e-05 1.66e-06 6.71e-04 9.08e-05 1.23e-05 1.66e-06
[97] 6.71e-04 9.08e-05 1.23e-05 1.66e-06 6.71e-04 9.08e-05
[103] 1.23e-05 1.66e-06 6.71e-04 9.08e-05 1.23e-05 1.66e-06
> fm1Dial.lme <-
+ lme(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
+ Dialyzer, ~ pressure + I(pressure^2))
> fm1Dial.lme
Linear mixed-effects model fit by REML
Data: Dialyzer
Log-restricted-likelihood: -326
Fixed: rate ~ (pressure + I(pressure^2) + I(pressure^3) + I(pressure^4)) * QB
(Intercept) pressure I(pressure^2)
-16.5980 88.6733 -42.7320
I(pressure^3) I(pressure^4) QB1
9.2165 -0.7756 -0.6317
pressure:QB1 I(pressure^2):QB1 I(pressure^3):QB1
0.3104 1.5742 0.0509
I(pressure^4):QB1
-0.0860
Random effects:
Formula: ~pressure + I(pressure^2) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.50 (Intr) pressr
pressure 4.91 -0.507
I(pressure^2) 1.47 0.311 -0.944
Residual 1.82
Number of Observations: 140
Number of Groups: 20
> plot(fm1Dial.lme, resid(.) ~ pressure, abline = 0)
> fm2Dial.lme <- update(fm1Dial.lme,
+ weights = varPower(form = ~ pressure))
> fm2Dial.lme
Linear mixed-effects model fit by REML
Data: Dialyzer
Log-restricted-likelihood: -310
Fixed: rate ~ (pressure + I(pressure^2) + I(pressure^3) + I(pressure^4)) * QB
(Intercept) pressure I(pressure^2)
-17.680 93.711 -49.187
I(pressure^3) I(pressure^4) QB1
12.245 -1.243 -0.921
pressure:QB1 I(pressure^2):QB1 I(pressure^3):QB1
1.353 0.480 0.491
I(pressure^4):QB1
-0.146
Random effects:
Formula: ~pressure + I(pressure^2) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.86 (Intr) pressr
pressure 5.33 -0.522
I(pressure^2) 1.65 0.362 -0.954
Residual 1.26
Variance function:
Structure: Power of variance covariate
Formula: ~pressure
Parameter estimates:
power
0.749
Number of Observations: 140
Number of Groups: 20
> anova(fm1Dial.lme, fm2Dial.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Dial.lme 1 17 687 736 -326
fm2Dial.lme 2 18 655 707 -310 1 vs 2 33.8 <.0001
> plot(fm2Dial.lme, resid(., type = "p") ~ pressure,
+ abline = 0)
> ## IGNORE_RDIFF_BEGIN
> intervals(fm2Dial.lme)
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) -19.148 -17.680 -16.212
pressure 87.231 93.711 100.192
I(pressure^2) -57.616 -49.187 -40.757
I(pressure^3) 7.967 12.245 16.523
I(pressure^4) -1.953 -1.243 -0.533
QB1 -2.478 -0.921 0.636
pressure:QB1 -5.127 1.353 7.833
I(pressure^2):QB1 -7.949 0.480 8.910
I(pressure^3):QB1 -3.787 0.491 4.769
I(pressure^4):QB1 -0.856 -0.146 0.564
Random Effects:
Level: Subject
lower est. upper
sd((Intercept)) 1.256 1.857 2.7466
sd(pressure) 3.623 5.328 7.8363
sd(I(pressure^2)) 1.091 1.648 2.4909
cor((Intercept),pressure) -0.803 -0.522 -0.0525
cor((Intercept),I(pressure^2)) -0.166 0.362 0.7292
cor(pressure,I(pressure^2)) -0.985 -0.954 -0.8624
Variance function:
lower est. upper
power 0.508 0.749 0.991
Within-group standard error:
lower est. upper
1.06 1.26 1.50
> ## IGNORE_RDIFF_END
> plot(fm2Dial.lme, resid(.) ~ pressure|QB, abline = 0)
> fm3Dial.lme <- update(fm2Dial.lme,
+ weights=varPower(form = ~ pressure | QB))
> fm3Dial.lme
Linear mixed-effects model fit by REML
Data: Dialyzer
Log-restricted-likelihood: -309
Fixed: rate ~ (pressure + I(pressure^2) + I(pressure^3) + I(pressure^4)) * QB
(Intercept) pressure I(pressure^2)
-17.695 93.759 -49.231
I(pressure^3) I(pressure^4) QB1
12.260 -1.244 -1.017
pressure:QB1 I(pressure^2):QB1 I(pressure^3):QB1
1.840 -0.194 0.827
I(pressure^4):QB1
-0.200
Random effects:
Formula: ~pressure + I(pressure^2) | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 1.82 (Intr) pressr
pressure 5.24 -0.502
I(pressure^2) 1.64 0.338 -0.951
Residual 1.26
Variance function:
Structure: Power of variance covariate, different strata
Formula: ~pressure | QB
Parameter estimates:
200 300
0.648 0.838
Number of Observations: 140
Number of Groups: 20
> anova(fm2Dial.lme, fm3Dial.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Dial.lme 1 18 655 707 -310
fm3Dial.lme 2 19 656 711 -309 1 vs 2 0.711 0.399
> fm4Dial.lme <- update(fm2Dial.lme,
+ weights = varConstPower(form = ~ pressure))
> anova(fm2Dial.lme, fm4Dial.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Dial.lme 1 18 655 707 -310
fm4Dial.lme 2 19 657 711 -309 1 vs 2 0.159 0.69
> plot(augPred(fm2Dial.lme), grid = TRUE)
> anova(fm2Dial.lme)
numDF denDF F-value p-value
(Intercept) 1 112 553 <.0001
pressure 1 112 2329 <.0001
I(pressure^2) 1 112 1175 <.0001
I(pressure^3) 1 112 360 <.0001
I(pressure^4) 1 112 12 0.0006
QB 1 18 5 0.0414
pressure:QB 1 112 80 <.0001
I(pressure^2):QB 1 112 1 0.2476
I(pressure^3):QB 1 112 2 0.1370
I(pressure^4):QB 1 112 0 0.6839
> anova(fm2Dial.lme, Terms = 8:10)
F-test for: I(pressure^2):QB, I(pressure^3):QB, I(pressure^4):QB
numDF denDF F-value p-value
1 3 112 1.25 0.294
> options(contrasts = c("contr.treatment", "contr.poly"))
> fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,
+ random = ~ Time)
> fm1BW.lme
Linear mixed-effects model fit by REML
Data: BodyWeight
Log-restricted-likelihood: -576
Fixed: weight ~ Time * Diet
(Intercept) Time Diet2 Diet3 Time:Diet2
251.652 0.360 200.665 252.072 0.606
Time:Diet3
0.298
Random effects:
Formula: ~Time | Rat
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 36.939 (Intr)
Time 0.248 -0.149
Residual 4.444
Number of Observations: 176
Number of Groups: 16
> fm2BW.lme <- update(fm1BW.lme, weights = varPower())
> fm2BW.lme
Linear mixed-effects model fit by REML
Data: BodyWeight
Log-restricted-likelihood: -571
Fixed: weight ~ Time * Diet
(Intercept) Time Diet2 Diet3 Time:Diet2
251.602 0.361 200.777 252.170 0.602
Time:Diet3
0.295
Random effects:
Formula: ~Time | Rat
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 36.898 (Intr)
Time 0.244 -0.145
Residual 0.175
Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power
0.543
Number of Observations: 176
Number of Groups: 16
> anova(fm1BW.lme, fm2BW.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1BW.lme 1 10 1172 1203 -576
fm2BW.lme 2 11 1164 1198 -571 1 vs 2 9.8 0.0017
> summary(fm2BW.lme)
Linear mixed-effects model fit by REML
Data: BodyWeight
AIC BIC logLik
1164 1198 -571
Random effects:
Formula: ~Time | Rat
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 36.898 (Intr)
Time 0.244 -0.145
Residual 0.175
Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power
0.543
Fixed effects: weight ~ Time * Diet
Value Std.Error DF t-value p-value
(Intercept) 251.6 13.07 157 19.25 0.0000
Time 0.4 0.09 157 4.09 0.0001
Diet2 200.8 22.66 13 8.86 0.0000
Diet3 252.2 22.66 13 11.13 0.0000
Time:Diet2 0.6 0.16 157 3.87 0.0002
Time:Diet3 0.3 0.16 157 1.89 0.0601
Correlation:
(Intr) Time Diet2 Diet3 Tm:Dt2
Time -0.152
Diet2 -0.577 0.088
Diet3 -0.577 0.088 0.333
Time:Diet2 0.087 -0.569 -0.157 -0.050
Time:Diet3 0.086 -0.567 -0.050 -0.158 0.322
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.9374 -0.4439 0.0799 0.5808 2.2649
Number of Observations: 176
Number of Groups: 16
> anova(fm2BW.lme, L = c("Time:Diet2" = 1, "Time:Diet3" = -1))
F-test for linear combination(s)
Time:Diet2 Time:Diet3
1 -1
numDF denDF F-value p-value
1 1 157 2.86 0.0926
> cs1CompSymm <- corCompSymm(value = 0.3, form = ~ 1 | Subject)
> cs2CompSymm <- corCompSymm(value = 0.3, form = ~ age | Subject)
> cs1CompSymm <- Initialize(cs1CompSymm, data = Orthodont)
> corMatrix(cs1CompSymm)
$M01
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M02
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M03
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M04
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M05
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M06
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M07
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M08
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M09
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M10
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M11
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M12
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M13
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M14
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M15
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$M16
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F01
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F02
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F03
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F04
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F05
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F06
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F07
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F08
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F09
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F10
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
$F11
[,1] [,2] [,3] [,4]
[1,] 1.0 0.3 0.3 0.3
[2,] 0.3 1.0 0.3 0.3
[3,] 0.3 0.3 1.0 0.3
[4,] 0.3 0.3 0.3 1.0
> cs1Symm <- corSymm(value = c(0.2, 0.1, -0.1, 0, 0.2, 0),
+ form = ~ 1 | Subject)
> cs1Symm <- Initialize(cs1Symm, data = Orthodont)
> corMatrix(cs1Symm)
$M01
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M02
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M03
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M04
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M05
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M06
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M07
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M08
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M09
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M10
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M11
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M12
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M13
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M14
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M15
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$M16
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F01
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F02
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F03
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F04
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F05
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F06
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F07
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F08
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F09
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F10
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
$F11
[,1] [,2] [,3] [,4]
[1,] 1.0 2.00e-01 1.00e-01 -1.00e-01
[2,] 0.2 1.00e+00 9.02e-17 2.00e-01
[3,] 0.1 9.02e-17 1.00e+00 -1.04e-16
[4,] -0.1 2.00e-01 -1.04e-16 1.00e+00
> cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
> cs1AR1 <- Initialize(cs1AR1, data = Orthodont)
> corMatrix(cs1AR1)
$M01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M12
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M13
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M14
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M15
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$M16
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
$F11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.80 0.64 0.512
[2,] 0.800 1.00 0.80 0.640
[3,] 0.640 0.80 1.00 0.800
[4,] 0.512 0.64 0.80 1.000
> cs1ARMA <- corARMA(0.4, form = ~ 1 | Subject, q = 1)
> cs1ARMA <- Initialize(cs1ARMA, data = Orthodont)
> corMatrix(cs1ARMA)
$M01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M12
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M13
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M14
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M15
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$M16
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
$F11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.345 0.000 0.000
[2,] 0.345 1.000 0.345 0.000
[3,] 0.000 0.345 1.000 0.345
[4,] 0.000 0.000 0.345 1.000
> cs2ARMA <- corARMA(c(0.8, 0.4), form = ~ 1 | Subject, p=1, q=1)
> cs2ARMA <- Initialize(cs2ARMA, data = Orthodont)
> corMatrix(cs2ARMA)
$M01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M12
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M13
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M14
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M15
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$M16
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F01
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F02
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F03
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F04
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F05
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F06
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F07
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F08
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F09
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F10
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
$F11
[,1] [,2] [,3] [,4]
[1,] 1.000 0.880 0.704 0.563
[2,] 0.880 1.000 0.880 0.704
[3,] 0.704 0.880 1.000 0.880
[4,] 0.563 0.704 0.880 1.000
> spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)
> cs1Exp <- corExp(1, form = ~ x + y)
> cs1Exp <- Initialize(cs1Exp, spatDat)
> corMatrix(cs1Exp)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 0.702 0.493 0.346 0.243
[2,] 0.702 1.000 0.702 0.493 0.346
[3,] 0.493 0.702 1.000 0.702 0.493
[4,] 0.346 0.493 0.702 1.000 0.702
[5,] 0.243 0.346 0.493 0.702 1.000
> cs2Exp <- corExp(1, form = ~ x + y, metric = "man")
> cs2Exp <- Initialize(cs2Exp, spatDat)
> corMatrix(cs2Exp)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 0.607 0.368 0.223 0.135
[2,] 0.607 1.000 0.607 0.368 0.223
[3,] 0.368 0.607 1.000 0.607 0.368
[4,] 0.223 0.368 0.607 1.000 0.607
[5,] 0.135 0.223 0.368 0.607 1.000
> cs3Exp <- corExp(c(1, 0.2), form = ~ x + y, nugget = TRUE)
> cs3Exp <- Initialize(cs3Exp, spatDat)
> corMatrix(cs3Exp)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 0.562 0.394 0.277 0.194
[2,] 0.562 1.000 0.562 0.394 0.277
[3,] 0.394 0.562 1.000 0.562 0.394
[4,] 0.277 0.394 0.562 1.000 0.562
[5,] 0.194 0.277 0.394 0.562 1.000
> fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
+ data = Ovary, random = pdDiag(~sin(2*pi*Time)))
> fm1Ovar.lme
Linear mixed-effects model fit by REML
Data: Ovary
Log-restricted-likelihood: -813
Fixed: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
12.182 -3.299 -0.862
Random effects:
Formula: ~sin(2 * pi * Time) | Mare
Structure: Diagonal
(Intercept) sin(2 * pi * Time) Residual
StdDev: 3.05 2.08 3.11
Number of Observations: 308
Number of Groups: 11
> ACF(fm1Ovar.lme)
lag ACF
1 0 1.0000
2 1 0.3795
3 2 0.1797
4 3 0.0357
5 4 0.0598
6 5 0.0021
7 6 0.0643
8 7 0.0716
9 8 0.0486
10 9 0.0278
11 10 -0.0343
12 11 -0.0772
13 12 -0.1611
14 13 -0.1960
15 14 -0.2893
> plot(ACF(fm1Ovar.lme, maxLag = 10), alpha = 0.01)
> fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1())
> anova(fm1Ovar.lme, fm2Ovar.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Ovar.lme 1 6 1638 1660 -813
fm2Ovar.lme 2 7 1563 1589 -775 1 vs 2 76.6 <.0001
> if (interactive()) intervals(fm2Ovar.lme)
> fm3Ovar.lme <- update(fm1Ovar.lme, correlation = corARMA(q = 2))
> fm3Ovar.lme
Linear mixed-effects model fit by REML
Data: Ovary
Log-restricted-likelihood: -778
Fixed: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
12.194 -3.115 -0.869
Random effects:
Formula: ~sin(2 * pi * Time) | Mare
Structure: Diagonal
(Intercept) sin(2 * pi * Time) Residual
StdDev: 2.97 1.67 3.24
Correlation Structure: ARMA(0,2)
Formula: ~1 | Mare
Parameter estimate(s):
Theta1 Theta2
0.475 0.257
Number of Observations: 308
Number of Groups: 11
> anova(fm2Ovar.lme, fm3Ovar.lme, test = F)
Model df AIC BIC logLik
fm2Ovar.lme 1 7 1563 1589 -775
fm3Ovar.lme 2 8 1571 1601 -778
> fm4Ovar.lme <- update(fm1Ovar.lme,
+ correlation = corCAR1(form = ~Time))
> anova(fm2Ovar.lme, fm4Ovar.lme, test = F)
Model df AIC BIC logLik
fm2Ovar.lme 1 7 1563 1589 -775
fm4Ovar.lme 2 7 1566 1592 -776
> (fm5Ovar.lme <- update(fm1Ovar.lme,
+ corr = corARMA(p = 1, q = 1)))
Linear mixed-effects model fit by REML
Data: Ovary
Log-restricted-likelihood: -772
Fixed: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
12.125 -2.920 -0.849
Random effects:
Formula: ~sin(2 * pi * Time) | Mare
Structure: Diagonal
(Intercept) sin(2 * pi * Time) Residual
StdDev: 2.61 1 3.73
Correlation Structure: ARMA(1,1)
Formula: ~1 | Mare
Parameter estimate(s):
Phi1 Theta1
0.787 -0.279
Number of Observations: 308
Number of Groups: 11
> anova(fm2Ovar.lme, fm5Ovar.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Ovar.lme 1 7 1563 1589 -775
fm5Ovar.lme 2 8 1560 1590 -772 1 vs 2 5.55 0.0184
> plot(ACF(fm5Ovar.lme, maxLag = 10, resType = "n"), alpha = 0.01)
> Variogram(fm2BW.lme, form = ~ Time)
variog dist n.pairs
1 0.345 1 16
2 0.993 6 16
3 0.762 7 144
4 0.685 8 16
5 0.682 13 16
6 0.951 14 128
7 0.900 15 16
8 1.694 20 16
9 1.125 21 112
10 1.088 22 16
11 0.897 28 96
12 0.932 29 16
13 0.851 35 80
14 0.755 36 16
15 1.082 42 64
16 1.567 43 16
17 0.644 49 48
18 0.674 56 32
19 0.587 63 16
> plot(Variogram(fm2BW.lme, form = ~ Time, maxDist = 42))
> fm3BW.lme <- update(fm2BW.lme,
+ correlation = corExp(form = ~ Time))
> ## IGNORE_RDIFF_BEGIN
> intervals(fm3BW.lme)
Approximate 95% confidence intervals
Fixed effects:
lower est. upper
(Intercept) 2.26e+02 251.487 277.336
Time 1.93e-01 0.363 0.532
Diet2 1.52e+02 200.786 249.841
Diet3 2.04e+02 252.590 301.667
Time:Diet2 3.22e-01 0.624 0.926
Time:Diet3 2.63e-03 0.307 0.610
Random Effects:
Level: Rat
lower est. upper
sd((Intercept)) 25.023 36.919 54.471
sd(Time) 0.147 0.233 0.368
cor((Intercept),Time) -0.637 -0.147 0.428
Correlation structure:
lower est. upper
range 2.46 4.89 9.7
Variance function:
lower est. upper
power 0.244 0.594 0.944
Within-group standard error:
lower est. upper
0.0181 0.1384 1.0593
> ## IGNORE_RDIFF_END
> anova(fm2BW.lme, fm3BW.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2BW.lme 1 11 1164 1198 -571
fm3BW.lme 2 12 1145 1183 -561 1 vs 2 20.8 <.0001
> fm4BW.lme <-
+ update(fm3BW.lme, correlation = corExp(form = ~ Time,
+ nugget = TRUE))
> anova(fm3BW.lme, fm4BW.lme)
Model df AIC BIC logLik Test L.Ratio p-value
fm3BW.lme 1 12 1145 1183 -561
fm4BW.lme 2 13 1138 1178 -556 1 vs 2 9.5 0.0021
> plot(Variogram(fm3BW.lme, form = ~ Time, maxDist = 42))
> plot(Variogram(fm3BW.lme, form = ~ Time, maxDist = 42,
+ resType = "n", robust = TRUE))
> fm5BW.lme <- update(fm3BW.lme, correlation = corRatio(form = ~ Time))
> fm6BW.lme <- update(fm3BW.lme, correlation = corSpher(form = ~ Time))
> fm7BW.lme <- update(fm3BW.lme, correlation = corLin(form = ~ Time))
> fm8BW.lme <- update(fm3BW.lme, correlation = corGaus(form = ~ Time))
> anova(fm3BW.lme, fm5BW.lme, fm6BW.lme, fm7BW.lme, fm8BW.lme)
Model df AIC BIC logLik
fm3BW.lme 1 12 1145 1183 -561
fm5BW.lme 2 12 1149 1186 -562
fm6BW.lme 3 12 1151 1188 -563
fm7BW.lme 4 12 1151 1188 -563
fm8BW.lme 5 12 1151 1188 -563
> fm1Orth.gls <- gls(distance ~ Sex * I(age - 11), Orthodont,
+ correlation = corSymm(form = ~ 1 | Subject),
+ weights = varIdent(form = ~ 1 | age))
> fm1Orth.gls
Generalized least squares fit by REML
Model: distance ~ Sex * I(age - 11)
Data: Orthodont
Log-restricted-likelihood: -212
Coefficients:
(Intercept) SexFemale
24.937 -2.272
I(age - 11) SexFemale:I(age - 11)
0.827 -0.350
Correlation Structure: General
Formula: ~1 | Subject
Parameter estimate(s):
Correlation:
1 2 3
2 0.568
3 0.659 0.581
4 0.522 0.725 0.740
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | age
Parameter estimates:
8 10 12 14
1.000 0.879 1.074 0.959
Degrees of freedom: 108 total; 104 residual
Residual standard error: 2.33
> ## IGNORE_RDIFF_BEGIN
> intervals(fm1Orth.gls)
Approximate 95% confidence intervals
Coefficients:
lower est. upper
(Intercept) 23.999 24.937 25.875
SexFemale -3.741 -2.272 -0.803
I(age - 11) 0.664 0.827 0.990
SexFemale:I(age - 11) -0.606 -0.350 -0.095
Correlation structure:
lower est. upper
cor(1,2) 0.253 0.568 0.774
cor(1,3) 0.385 0.659 0.826
cor(1,4) 0.184 0.522 0.749
cor(2,3) 0.272 0.581 0.781
cor(2,4) 0.481 0.725 0.865
cor(3,4) 0.512 0.740 0.870
Variance function:
lower est. upper
10 0.633 0.879 1.22
12 0.801 1.074 1.44
14 0.686 0.959 1.34
Residual standard error:
lower est. upper
1.77 2.33 3.07
> ## IGNORE_RDIFF_END
> fm2Orth.gls <-
+ update(fm1Orth.gls, corr = corCompSymm(form = ~ 1 | Subject))
> anova(fm1Orth.gls, fm2Orth.gls)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Orth.gls 1 14 453 490 -212
fm2Orth.gls 2 9 450 474 -216 1 vs 2 7.43 0.191
> intervals(fm2Orth.gls)
Approximate 95% confidence intervals
Coefficients:
lower est. upper
(Intercept) 23.930 24.868 25.8071
SexFemale -3.668 -2.197 -0.7266
I(age - 11) 0.642 0.794 0.9470
SexFemale:I(age - 11) -0.555 -0.316 -0.0763
Correlation structure:
lower est. upper
Rho 0.446 0.635 0.778
Variance function:
lower est. upper
10 0.638 0.862 1.17
12 0.771 1.034 1.39
14 0.683 0.920 1.24
Residual standard error:
lower est. upper
1.81 2.39 3.15
> fm3Orth.gls <- update(fm2Orth.gls, weights = NULL)
> anova(fm2Orth.gls, fm3Orth.gls)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Orth.gls 1 9 450 474 -216
fm3Orth.gls 2 6 446 462 -217 1 vs 2 1.78 0.618
> plot(fm3Orth.gls, resid(., type = "n") ~ age | Sex)
> fm4Orth.gls <- update(fm3Orth.gls,
+ weights = varIdent(form = ~ 1 | Sex))
> anova(fm3Orth.gls, fm4Orth.gls)
Model df AIC BIC logLik Test L.Ratio p-value
fm3Orth.gls 1 6 446 462 -217
fm4Orth.gls 2 7 436 455 -211 1 vs 2 11.6 7e-04
> qqnorm(fm4Orth.gls, ~resid(., type = "n"))
> # not in book but needed for the following command
> fm3Orth.lme <-
+ lme(distance~Sex*I(age-11), data = Orthodont,
+ random = ~ I(age-11) | Subject,
+ weights = varIdent(form = ~ 1 | Sex))
> anova(fm3Orth.lme, fm4Orth.gls, test = FALSE)
Model df AIC BIC logLik
fm3Orth.lme 1 9 430 453 -206
fm4Orth.gls 2 7 436 455 -211
> fm1Dial.gls <-
+ gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
+ Dialyzer)
> plot(fm1Dial.gls, resid(.) ~ pressure, abline = 0)
> fm2Dial.gls <- update(fm1Dial.gls,
+ weights = varPower(form = ~ pressure))
> anova(fm1Dial.gls, fm2Dial.gls)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Dial.gls 1 11 761 793 -370
fm2Dial.gls 2 12 738 773 -357 1 vs 2 24.9 <.0001
> ACF(fm2Dial.gls, form = ~ 1 | Subject)
lag ACF
1 0 1.0000
2 1 0.7709
3 2 0.6323
4 3 0.4083
5 4 0.2007
6 5 0.0731
7 6 0.0778
> plot(ACF(fm2Dial.gls, form = ~ 1 | Subject), alpha = 0.01)
> (fm3Dial.gls <- update(fm2Dial.gls,
+ corr = corAR1(0.771, form = ~ 1 | Subject)))
Generalized least squares fit by REML
Model: rate ~ (pressure + I(pressure^2) + I(pressure^3) + I(pressure^4)) * QB
Data: Dialyzer
Log-restricted-likelihood: -308
Coefficients:
(Intercept) pressure I(pressure^2)
-16.818 92.334 -49.265
I(pressure^3) I(pressure^4) QB300
11.400 -1.020 -1.594
pressure:QB300 I(pressure^2):QB300 I(pressure^3):QB300
1.705 2.127 0.480
I(pressure^4):QB300
-0.221
Correlation Structure: AR(1)
Formula: ~1 | Subject
Parameter estimate(s):
Phi
0.753
Variance function:
Structure: Power of variance covariate
Formula: ~pressure
Parameter estimates:
power
0.518
Degrees of freedom: 140 total; 130 residual
Residual standard error: 3.05
> intervals(fm3Dial.gls)
Approximate 95% confidence intervals
Coefficients:
lower est. upper
(Intercept) -18.90 -16.818 -14.7401
pressure 81.91 92.334 102.7541
I(pressure^2) -63.10 -49.265 -35.4263
I(pressure^3) 4.56 11.400 18.2345
I(pressure^4) -2.12 -1.020 0.0856
QB300 -4.76 -1.594 1.5681
pressure:QB300 -13.64 1.705 17.0518
I(pressure^2):QB300 -17.95 2.127 22.2020
I(pressure^3):QB300 -9.35 0.480 10.3097
I(pressure^4):QB300 -1.80 -0.221 1.3608
Correlation structure:
lower est. upper
Phi 0.628 0.753 0.839
Variance function:
lower est. upper
power 0.381 0.518 0.656
Residual standard error:
lower est. upper
2.50 3.05 3.71
> anova(fm2Dial.gls, fm3Dial.gls)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Dial.gls 1 12 738 773 -357
fm3Dial.gls 2 13 643 680 -308 1 vs 2 97.5 <.0001
> anova(fm3Dial.gls, fm2Dial.lme, test = FALSE)
Model df AIC BIC logLik
fm3Dial.gls 1 13 643 680 -308
fm2Dial.lme 2 18 655 707 -310
> fm1Wheat2 <- gls(yield ~ variety - 1, Wheat2)
> Variogram(fm1Wheat2, form = ~ latitude + longitude)
variog dist n.pairs
1 0.370 4.30 1143
2 0.396 5.61 1259
3 0.470 8.39 1263
4 0.508 9.32 1241
5 0.545 10.52 1242
6 0.640 12.75 1241
7 0.612 13.39 1283
8 0.657 14.76 1252
9 0.738 16.18 1221
10 0.728 17.37 1261
11 0.751 18.46 1288
12 0.875 20.24 1254
13 0.805 21.63 1256
14 0.871 22.67 1182
15 0.868 24.62 1257
16 0.859 26.24 1264
17 0.971 28.56 1235
18 0.993 30.79 1226
19 1.096 34.59 1263
20 1.341 39.36 1234
> plot(Variogram(fm1Wheat2, form = ~ latitude + longitude,
+ maxDist = 32), xlim = c(0,32))
> fm2Wheat2 <- update(fm1Wheat2, corr = corSpher(c(28, 0.2),
+ form = ~ latitude + longitude,
+ nugget = TRUE))
> fm2Wheat2
Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: Wheat2
Log-restricted-likelihood: -534
Coefficients:
varietyARAPAHOE varietyBRULE varietyBUCKSKIN
26.7 25.8 34.8
varietyCENTURA varietyCENTURK78 varietyCHEYENNE
25.1 26.3 24.7
varietyCODY varietyCOLT varietyGAGE
22.5 25.2 24.3
varietyHOMESTEAD varietyKS831374 varietyLANCER
21.7 26.9 23.3
varietyLANCOTA varietyNE83404 varietyNE83406
21.3 24.0 25.3
varietyNE83407 varietyNE83432 varietyNE83498
25.2 21.8 28.7
varietyNE83T12 varietyNE84557 varietyNE85556
22.1 21.8 28.0
varietyNE85623 varietyNE86482 varietyNE86501
23.9 25.0 25.0
varietyNE86503 varietyNE86507 varietyNE86509
27.2 27.5 22.4
varietyNE86527 varietyNE86582 varietyNE86606
25.9 22.6 26.8
varietyNE86607 varietyNE86T666 varietyNE87403
25.9 16.8 21.5
varietyNE87408 varietyNE87409 varietyNE87446
24.3 26.3 22.2
varietyNE87451 varietyNE87457 varietyNE87463
24.2 23.5 23.2
varietyNE87499 varietyNE87512 varietyNE87513
22.2 22.6 21.8
varietyNE87522 varietyNE87612 varietyNE87613
19.5 27.4 27.6
varietyNE87615 varietyNE87619 varietyNE87627
23.8 28.5 18.5
varietyNORKAN varietyREDLAND varietyROUGHRIDER
22.1 28.0 25.7
varietySCOUT66 varietySIOUXLAND varietyTAM107
26.9 25.7 22.8
varietyTAM200 varietyVONA
18.8 24.8
Correlation Structure: Spherical spatial correlation
Formula: ~latitude + longitude
Parameter estimate(s):
range nugget
27.457 0.209
Degrees of freedom: 224 total; 168 residual
Residual standard error: 7.41
> fm3Wheat2 <- update(fm1Wheat2,
+ corr = corRatio(c(12.5, 0.2),
+ form = ~ latitude + longitude, nugget = TRUE))
> fm3Wheat2
Generalized least squares fit by REML
Model: yield ~ variety - 1
Data: Wheat2
Log-restricted-likelihood: -533
Coefficients:
varietyARAPAHOE varietyBRULE varietyBUCKSKIN
26.5 26.3 35.0
varietyCENTURA varietyCENTURK78 varietyCHEYENNE
24.9 26.7 24.4
varietyCODY varietyCOLT varietyGAGE
23.4 25.2 24.5
varietyHOMESTEAD varietyKS831374 varietyLANCER
21.5 26.5 23.0
varietyLANCOTA varietyNE83404 varietyNE83406
21.2 24.6 25.7
varietyNE83407 varietyNE83432 varietyNE83498
25.5 21.8 29.1
varietyNE83T12 varietyNE84557 varietyNE85556
21.6 21.3 27.9
varietyNE85623 varietyNE86482 varietyNE86501
23.7 24.4 24.9
varietyNE86503 varietyNE86507 varietyNE86509
27.3 27.4 22.2
varietyNE86527 varietyNE86582 varietyNE86606
25.0 23.3 27.3
varietyNE86607 varietyNE86T666 varietyNE87403
25.7 17.3 21.8
varietyNE87408 varietyNE87409 varietyNE87446
24.7 26.3 22.1
varietyNE87451 varietyNE87457 varietyNE87463
24.4 23.6 23.4
varietyNE87499 varietyNE87512 varietyNE87513
21.9 22.7 21.6
varietyNE87522 varietyNE87612 varietyNE87613
19.6 28.3 27.7
varietyNE87615 varietyNE87619 varietyNE87627
24.0 28.7 19.1
varietyNORKAN varietyREDLAND varietyROUGHRIDER
22.7 27.7 25.6
varietySCOUT66 varietySIOUXLAND varietyTAM107
26.3 25.7 22.5
varietyTAM200 varietyVONA
18.7 25.0
Correlation Structure: Rational quadratic spatial correlation
Formula: ~latitude + longitude
Parameter estimate(s):
range nugget
13.461 0.194
Degrees of freedom: 224 total; 168 residual
Residual standard error: 8.85
> anova(fm2Wheat2, fm3Wheat2)
Model df AIC BIC logLik
fm2Wheat2 1 59 1186 1370 -534
fm3Wheat2 2 59 1183 1368 -533
> anova(fm1Wheat2, fm3Wheat2)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Wheat2 1 57 1355 1533 -620
fm3Wheat2 2 59 1183 1368 -533 1 vs 2 176 <.0001
> plot(Variogram(fm3Wheat2, resType = "n"))
> plot(fm3Wheat2, resid(., type = "n") ~ fitted(.), abline = 0)
> qqnorm(fm3Wheat2, ~ resid(., type = "n"))
> fm4Wheat2 <- update(fm3Wheat2, model = yield ~ variety)
> anova(fm4Wheat2)
Denom. DF: 168
numDF F-value p-value
(Intercept) 1 30.40 <.0001
variety 55 1.85 0.0015
> anova(fm3Wheat2, L = c(-1, 0, 1))
Denom. DF: 168
F-test for linear combination(s)
varietyARAPAHOE varietyBUCKSKIN
-1 1
numDF F-value p-value
1 1 7.7 0.0062
> # cleanup
>
> summary(warnings())
No warnings
======
ch06.R
======
> #-*- R -*-
>
> # initialization
>
> library(nlme)
> options(width = 65,
+ ## reduce platform dependence in printed output when testing
+ digits = if(nzchar(Sys.getenv("R_TESTS"))) 3 else 5)
> options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))
> pdf(file = "ch06.pdf")
> # Chapter 6 Nonlinear Mixed-Effects Models:
> # Basic Concepts and Motivating Examples
>
> # 6.2 Indomethicin Kinetics
>
> plot(Indometh)
> fm1Indom.nls <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),
+ data = Indometh)
> summary(fm1Indom.nls)
Formula: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Parameters:
Estimate Std. Error t value Pr(>|t|)
A1 2.773 0.253 10.95 4e-16 ***
lrc1 0.886 0.222 3.99 0.00018 ***
A2 0.607 0.267 2.27 0.02660 *
lrc2 -1.092 0.409 -2.67 0.00966 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.174 on 62 degrees of freedom
Number of iterations to convergence: 0
Achieved convergence tolerance: 3.3e-07
> plot(fm1Indom.nls, Subject ~ resid(.), abline = 0)
> (fm1Indom.lis <- nlsList(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),
+ data = Indometh))
Call:
Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) | Subject
Data: Indometh
Coefficients:
A1 lrc1 A2 lrc2
1 2.03 0.579 0.192 -1.788
4 2.20 0.242 0.255 -1.603
2 2.83 0.801 0.499 -1.635
5 3.57 1.041 0.291 -1.507
6 3.00 1.088 0.969 -0.873
3 5.47 1.750 1.676 -0.412
Degrees of freedom: 66 total; 42 residual
Residual standard error: 0.0756
> plot(intervals(fm1Indom.lis))
> ## IGNORE_RDIFF_BEGIN
> (fm1Indom.nlme <- nlme(fm1Indom.lis,
+ random = pdDiag(A1 + lrc1 + A2 + lrc2 ~ 1),
+ control = list(tolerance = 0.0001)))
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Data: Indometh
Log-likelihood: 54.6
Fixed: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
A1 lrc1 A2 lrc2
2.828 0.774 0.461 -1.344
Random effects:
Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
Level: Subject
Structure: Diagonal
A1 lrc1 A2 lrc2 Residual
StdDev: 0.571 0.158 0.112 7.32e-06 0.0815
Number of Observations: 66
Number of Groups: 6
> ## IGNORE_RDIFF_END
> fm2Indom.nlme <- update(fm1Indom.nlme,
+ random = pdDiag(A1 + lrc1 + A2 ~ 1))
> anova(fm1Indom.nlme, fm2Indom.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Indom.nlme 1 9 -91.2 -71.5 54.6
fm2Indom.nlme 2 8 -93.2 -75.7 54.6 1 vs 2 0.00871 0.926
> (fm3Indom.nlme <- update(fm2Indom.nlme, random = A1+lrc1+A2 ~ 1))
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Data: Indometh
Log-likelihood: 58.5
Fixed: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
A1 lrc1 A2 lrc2
2.815 0.829 0.561 -1.141
Random effects:
Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)
Level: Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
A1 0.6904 A1 lrc1
lrc1 0.1790 0.932
A2 0.1537 0.471 0.118
Residual 0.0781
Number of Observations: 66
Number of Groups: 6
> fm4Indom.nlme <-
+ update(fm3Indom.nlme,
+ random = pdBlocked(list(A1 + lrc1 ~ 1, A2 ~ 1)))
> ## IGNORE_RDIFF_BEGIN
> anova(fm3Indom.nlme, fm4Indom.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm3Indom.nlme 1 11 -94.9 -70.9 58.5
fm4Indom.nlme 2 9 -98.2 -78.4 58.1 1 vs 2 0.789 0.674
> ## IGNORE_RDIFF_END
> anova(fm2Indom.nlme, fm4Indom.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Indom.nlme 1 8 -93.2 -75.7 54.6
fm4Indom.nlme 2 9 -98.2 -78.4 58.1 1 vs 2 6.97 0.0083
> plot(fm4Indom.nlme, id = 0.05, adj = -1)
> qqnorm(fm4Indom.nlme)
> plot(augPred(fm4Indom.nlme, level = 0:1))
> summary(fm4Indom.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Data: Indometh
AIC BIC logLik
-98.2 -78.4 58.1
Random effects:
Composite Structure: Blocked
Block 1: A1, lrc1
Formula: list(A1 ~ 1, lrc1 ~ 1)
Level: Subject
Structure: General positive-definite
StdDev Corr
A1 0.720 A1
lrc1 0.149 1
Block 2: A2
Formula: A2 ~ 1 | Subject
A2 Residual
StdDev: 0.213 0.0782
Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
Value Std.Error DF t-value p-value
A1 2.783 0.327 57 8.51 0
lrc1 0.898 0.111 57 8.11 0
A2 0.658 0.143 57 4.61 0
lrc2 -1.000 0.150 57 -6.67 0
Correlation:
A1 lrc1 A2
lrc1 0.602
A2 -0.058 0.556
lrc2 -0.109 0.570 0.702
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.459 -0.437 0.110 0.504 3.057
Number of Observations: 66
Number of Groups: 6
> # 6.3 Growth of Soybean Plants
>
> head(Soybean)
Grouped Data: weight ~ Time | Plot
Plot Variety Year Time weight
1 1988F1 F 1988 14 0.106
2 1988F1 F 1988 21 0.261
3 1988F1 F 1988 28 0.666
4 1988F1 F 1988 35 2.110
5 1988F1 F 1988 42 3.560
6 1988F1 F 1988 49 6.230
> plot(Soybean, outer = ~ Year * Variety)
> (fm1Soy.lis <- nlsList(weight ~ SSlogis(Time, Asym, xmid, scal),
+ data = Soybean,
+ ## in R >= 3.4.3, more iterations are needed for "1989P5"
+ ## due to a change of initial values in SSlogis();
+ ## control is passed to getInitial() only since R 4.1.0
+ control = list(maxiter = 60)))
Warning: 1 error caught in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data = xy, start = list(xmid = aux[[1L]], scal = aux[[2L]]), algorithm = "plinear", ...): step factor 0.000488281 reduced below 'minFactor' of 0.000976562
Call:
Model: weight ~ SSlogis(Time, Asym, xmid, scal) | Plot
Data: Soybean
Coefficients:
Asym xmid scal
1988F4 15.15 52.8 5.18
1988F2 19.75 56.6 8.41
1988F1 20.34 57.4 9.60
1988F7 19.87 56.2 8.07
1988F5 30.65 64.1 11.26
1988F8 22.78 59.3 9.00
1988F6 23.29 59.6 9.72
1988F3 23.70 56.4 7.64
1988P1 17.30 48.8 6.36
1988P5 17.70 51.3 6.81
1988P4 24.01 57.8 11.74
1988P8 28.25 63.0 10.95
1988P7 27.49 61.5 10.18
1988P3 24.94 56.3 8.32
1988P2 36.66 66.6 11.92
1988P6 163.70 105.0 17.93
1989F6 8.51 55.3 8.86
1989F5 9.67 51.3 7.21
1989F4 11.25 53.8 6.49
1989F1 11.25 56.6 6.07
1989F2 11.23 52.2 7.02
1989F7 10.07 51.4 5.50
1989F8 10.61 48.0 5.96
1989F3 18.42 66.1 9.22
1989P7 15.47 46.3 5.39
1989P4 18.18 57.2 8.40
1989P6 20.50 58.2 10.61
1989P5 17.89 54.1 6.05
1989P1 21.68 59.7 9.97
1989P3 22.28 53.4 7.90
1989P2 28.30 67.2 12.52
1989P8 NA NA NA
1990F2 19.46 66.3 13.16
1990F3 19.87 58.3 12.80
1990F4 27.44 70.3 14.56
1990F5 18.72 51.3 7.76
1990F1 19.79 55.7 9.62
1990F8 20.29 55.5 7.77
1990F7 19.84 54.7 6.79
1990F6 21.20 54.6 9.26
1990P8 18.51 52.4 8.58
1990P7 19.16 54.8 10.85
1990P3 19.20 49.7 9.32
1990P1 18.45 47.9 6.61
1990P6 17.69 50.2 6.63
1990P5 19.54 51.2 7.29
1990P2 25.79 62.4 11.66
1990P4 26.13 61.2 10.97
Degrees of freedom: 404 total; 263 residual
Residual standard error: 1.04
> ## IGNORE_RDIFF_BEGIN
> (fm1Soy.nlme <- nlme(fm1Soy.lis))
Nonlinear mixed-effects model fit by maximum likelihood
Model: weight ~ SSlogis(Time, Asym, xmid, scal)
Data: Soybean
Log-likelihood: -740
Fixed: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Asym xmid scal
19.3 55.0 8.4
Random effects:
Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Level: Plot
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym 5.20 Asym xmid
xmid 4.20 0.721
scal 1.40 0.711 0.959
Residual 1.12
Number of Observations: 412
Number of Groups: 48
> ## IGNORE_RDIFF_END
> fm2Soy.nlme <- update(fm1Soy.nlme, weights = varPower())
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
> anova(fm1Soy.nlme, fm2Soy.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Soy.nlme 1 10 1500 1540 -740
fm2Soy.nlme 2 11 746 790 -362 1 vs 2 756 <.0001
> plot(ranef(fm2Soy.nlme, augFrame = TRUE),
+ form = ~ Year * Variety, layout = c(3,1))
> soyFix <- fixef(fm2Soy.nlme)
> options(contrasts = c("contr.treatment", "contr.poly"))
> ## IGNORE_RDIFF_BEGIN
> (fm3Soy.nlme <-
+ update(fm2Soy.nlme,
+ fixed = Asym + xmid + scal ~ Year,
+ start = c(soyFix[1], 0, 0, soyFix[2], 0, 0, soyFix[3], 0, 0)))
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
Nonlinear mixed-effects model fit by maximum likelihood
Model: weight ~ SSlogis(Time, Asym, xmid, scal)
Data: Soybean
Log-likelihood: -326
Fixed: Asym + xmid + scal ~ Year
Asym.(Intercept) Asym.Year1989 Asym.Year1990
20.208 -6.303 -3.465
xmid.(Intercept) xmid.Year1989 xmid.Year1990
54.099 -2.480 -4.848
scal.(Intercept) scal.Year1989 scal.Year1990
8.051 -0.932 -0.662
Random effects:
Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Level: Plot
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym.(Intercept) 2.71e+00 As.(I) xm.(I)
xmid.(Intercept) 8.34e-12 0.992
scal.(Intercept) 1.08e-01 0.999 0.993
Residual 2.16e-01
Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power
0.95
Number of Observations: 412
Number of Groups: 48
> ## IGNORE_RDIFF_END
> anova(fm3Soy.nlme)
numDF denDF F-value p-value
Asym.(Intercept) 1 356 2057 <.0001
Asym.Year 2 356 103 <.0001
xmid.(Intercept) 1 356 11420 <.0001
xmid.Year 2 356 9 1e-04
scal.(Intercept) 1 356 7967 <.0001
scal.Year 2 356 11 <.0001
> # The following line is not in the book but needed to fit the model
> fm4Soy.nlme <-
+ nlme(weight ~ SSlogis(Time, Asym, xmid, scal),
+ data = Soybean,
+ fixed = list(Asym ~ Year*Variety, xmid ~ Year + Variety, scal ~ Year),
+ random = Asym ~ 1,
+ start = c(17, 0, 0, 0, 0, 0, 52, 0, 0, 0, 7.5, 0, 0),
+ weights = varPower(0.95), control = list(verbose = TRUE))
> # FIXME: An update doesn't work for the fixed argument when fixed is a list
> ## p. 293-4 :
> summary(fm4Soy.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: weight ~ SSlogis(Time, Asym, xmid, scal)
Data: Soybean
AIC BIC logLik
616 681 -292
Random effects:
Formula: Asym ~ 1 | Plot
Asym.(Intercept) Residual
StdDev: 1.04 0.218
Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power
0.943
Fixed effects: list(Asym ~ Year * Variety, xmid ~ Year + Variety, scal ~ Year)
Value Std.Error DF t-value p-value
Asym.(Intercept) 19.4 0.954 352 20.4 0.0000
Asym.Year1989 -8.8 1.072 352 -8.2 0.0000
Asym.Year1990 -3.7 1.177 352 -3.1 0.0018
Asym.VarietyP 1.6 1.038 352 1.6 0.1189
Asym.Year1989:VarietyP 5.6 1.171 352 4.8 0.0000
Asym.Year1990:VarietyP 0.1 1.176 352 0.1 0.9004
xmid.(Intercept) 54.8 0.755 352 72.6 0.0000
xmid.Year1989 -2.2 0.972 352 -2.3 0.0218
xmid.Year1990 -5.0 0.974 352 -5.1 0.0000
xmid.VarietyP -1.3 0.414 352 -3.1 0.0019
scal.(Intercept) 8.1 0.147 352 54.8 0.0000
scal.Year1989 -0.9 0.201 352 -4.4 0.0000
scal.Year1990 -0.7 0.212 352 -3.2 0.0016
Correlation:
As.(I) As.Y1989 As.Y1990 Asy.VP A.Y1989:
Asym.Year1989 -0.831
Asym.Year1990 -0.736 0.646
Asym.VarietyP -0.532 0.374 0.304
Asym.Year1989:VarietyP 0.339 -0.403 -0.249 -0.662
Asym.Year1990:VarietyP 0.318 -0.273 -0.447 -0.627 0.533
xmid.(Intercept) 0.729 -0.595 -0.523 -0.144 0.007
xmid.Year1989 -0.488 0.603 0.394 -0.021 0.133
xmid.Year1990 -0.489 0.433 0.661 -0.016 0.020
xmid.VarietyP -0.337 0.127 0.052 0.572 -0.114
scal.(Intercept) 0.432 -0.381 -0.345 0.023 -0.029
scal.Year1989 -0.311 0.369 0.252 -0.025 0.090
scal.Year1990 -0.296 0.263 0.398 -0.023 0.022
A.Y1990: xm.(I) x.Y198 x.Y199 xmd.VP
Asym.Year1989
Asym.Year1990
Asym.VarietyP
Asym.Year1989:VarietyP
Asym.Year1990:VarietyP
xmid.(Intercept) -0.011
xmid.Year1989 0.021 -0.705
xmid.Year1990 0.054 -0.706 0.545
xmid.VarietyP -0.057 -0.308 0.006 0.015
scal.(Intercept) -0.031 0.817 -0.629 -0.628 -0.022
scal.Year1989 0.023 -0.593 0.855 0.459 0.002
scal.Year1990 0.048 -0.563 0.437 0.840 0.004
sc.(I) s.Y198
Asym.Year1989
Asym.Year1990
Asym.VarietyP
Asym.Year1989:VarietyP
Asym.Year1990:VarietyP
xmid.(Intercept)
xmid.Year1989
xmid.Year1990
xmid.VarietyP
scal.(Intercept)
scal.Year1989 -0.731
scal.Year1990 -0.694 0.507
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.628 -0.608 -0.124 0.570 3.919
Number of Observations: 412
Number of Groups: 48
> plot(augPred(fm4Soy.nlme))# Fig 6.14, p. 295
> # 6.4 Clinical Study of Phenobarbital Kinetics
>
> (fm1Pheno.nlme <-
+ nlme(conc ~ phenoModel(Subject, time, dose, lCl, lV),
+ data = Phenobarb, fixed = lCl + lV ~ 1,
+ random = pdDiag(lCl + lV ~ 1), start = c(-5, 0),
+ na.action = NULL, naPattern = ~ !is.na(conc)))
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ phenoModel(Subject, time, dose, lCl, lV)
Data: Phenobarb
Log-likelihood: -505
Fixed: lCl + lV ~ 1
lCl lV
-5.093 0.343
Random effects:
Formula: list(lCl ~ 1, lV ~ 1)
Level: Subject
Structure: Diagonal
lCl lV Residual
StdDev: 0.44 0.45 2.79
Number of Observations: 155
Number of Groups: 59
> fm1Pheno.ranef <- ranef(fm1Pheno.nlme, augFrame = TRUE)
> # (These plots used to encounter difficulties, now fine):
> plot(fm1Pheno.ranef, form = lCl ~ Wt + ApgarInd)
> plot(fm1Pheno.ranef, form = lV ~ Wt + ApgarInd)
> options(contrasts = c("contr.treatment", "contr.poly"))
> if(FALSE)## This fit just "ping-pongs" until max.iterations error
+ fm2Pheno.nlme <-
+ update(fm1Pheno.nlme,
+ fixed = list(lCl ~ Wt, lV ~ Wt + ApgarInd),
+ start = c(-5.0935, 0, 0.34259, 0, 0),
+ control = list(pnlsTol = 1e-4, maxIter = 500,
+ msVerbose = TRUE, opt = "nlm"))
> ##summary(fm2Pheno.nlme)
> ##fm3Pheno.nlme <-
> ## update(fm2Pheno.nlme,
> ## fixed = lCl + lV ~ Wt,
> ## start = fixef(fm2Pheno.nlme)[-5])
> ##plot(fm3Pheno.nlme, conc ~ fitted(.), abline = c(0,1))
>
> # cleanup
>
> summary(warnings())
No warnings
======
ch08.R
======
> #-*- R -*-
>
> # initialization
>
> library(nlme)
> library(lattice)
> options(width = 65,
+ ## reduce platform dependence in printed output when testing
+ digits = if(nzchar(Sys.getenv("R_TESTS"))) 3 else 5)
> options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))
> pdf(file = "ch08.pdf")
> # Chapter 8 Fitting Nonlinear Mixed-Effects Models
>
> # 8.1 Fitting Nonlinear Models in S with nls and nlsList
>
> ## outer = ~1 is used to display all five curves in one panel
> plot(Orange, outer = ~1)
> logist <-
+ function(x, Asym, xmid, scal) Asym/(1 + exp(-(x - xmid)/scal))
> logist <- deriv(~Asym/(1+exp(-(x-xmid)/scal)),
+ c("Asym", "xmid", "scal"), function(x, Asym, xmid, scal){})
> Asym <- 180; xmid <- 700; scal <- 300
> logist(Orange$age[1:7], Asym, xmid, scal)
[1] 22.6 58.9 84.6 132.1 153.8 162.7 171.0
attr(,"gradient")
Asym xmid scal
[1,] 0.126 -0.0659 0.1279
[2,] 0.327 -0.1321 0.0951
[3,] 0.470 -0.1495 0.0179
[4,] 0.734 -0.1172 -0.1188
[5,] 0.854 -0.0746 -0.1321
[6,] 0.904 -0.0522 -0.1169
[7,] 0.950 -0.0286 -0.0841
> fm1Oran.nls <- nls(circumference ~ logist(age, Asym, xmid, scal),
+ data = Orange, start = c(Asym = 170, xmid = 700, scal = 500))
> summary(fm1Oran.nls)
Formula: circumference ~ logist(age, Asym, xmid, scal)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 192.7 20.2 9.52 7.5e-11 ***
xmid 728.8 107.3 6.79 1.1e-07 ***
scal 353.5 81.5 4.34 0.00013 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.4 on 32 degrees of freedom
Number of iterations to convergence: 5
Achieved convergence tolerance: 4.39e-06
> plot(fm1Oran.nls)
> plot(fm1Oran.nls, Tree ~ resid(.), abline = 0)
> Orange.sortAvg <- sortedXyData("age", "circumference", Orange)
> Orange.sortAvg
x y
1 118 31.0
2 484 57.8
3 664 93.2
4 1004 134.2
5 1231 145.6
6 1372 173.4
7 1582 175.8
> NLSstClosestX(Orange.sortAvg, 130)
[1] 969
> logistInit <- function(mCall, LHS, data) {
+ xy <- sortedXyData(mCall[["x"]], LHS, data)
+ if(nrow(xy) < 3) {
+ stop("Too few distinct input values to fit a logistic")
+ }
+ Asym <- max(abs(xy[,"y"]))
+ if (Asym != max(xy[,"y"])) Asym <- -Asym # negative asymptote
+ xmid <- NLSstClosestX(xy, 0.5 * Asym)
+ scal <- NLSstClosestX(xy, 0.75 * Asym) - xmid
+ value <- c(Asym, xmid, scal)
+ names(value) <- mCall[c("Asym", "xmid", "scal")]
+ value
+ }
> logist <- selfStart(logist, initial = logistInit)
> class(logist)
[1] "selfStart"
> logist <- selfStart(~ Asym/(1 + exp(-(x - xmid)/scal)),
+ initial = logistInit, parameters = c("Asym", "xmid", "scal"))
> getInitial(circumference ~ logist(age, Asym, xmid, scal), Orange)
Warning in getInitial.selfStart(func, data, mCall = as.list(match.call(func, :
selfStart initializing functions should have a final '...' argument since R 4.1.0
Asym xmid scal
176 637 347
> nls(circumference ~ logist(age, Asym, xmid, scal), Orange)
Warning in getInitial.selfStart(func, data, mCall = as.list(match.call(func, :
selfStart initializing functions should have a final '...' argument since R 4.1.0
Nonlinear regression model
model: circumference ~ logist(age, Asym, xmid, scal)
data: Orange
Asym xmid scal
193 729 354
residual sum-of-squares: 17480
Number of iterations to convergence: 4
Achieved convergence tolerance: 8.63e-07
> getInitial(circumference ~ SSlogis(age,Asym,xmid,scal), Orange)
Asym xmid scal
193 729 354
> nls(circumference ~ SSlogis(age, Asym, xmid, scal), Orange)
Nonlinear regression model
model: circumference ~ SSlogis(age, Asym, xmid, scal)
data: Orange
Asym xmid scal
193 729 354
residual sum-of-squares: 17480
Number of iterations to convergence: 0
Achieved convergence tolerance: 2.2e-06
> fm1Oran.lis <-
+ nlsList(circumference ~ SSlogis(age, Asym, xmid, scal) | Tree,
+ data = Orange)
> fm1Oran.lis <- nlsList(SSlogis, Orange)
> fm1Oran.lis.noSS <-
+ nlsList(circumference ~ Asym/(1+exp(-(age-xmid)/scal)),
+ data = Orange,
+ start = c(Asym = 170, xmid = 700, scal = 500))
> fm1Oran.lis
Call:
Model: circumference ~ SSlogis(age, Asym, xmid, scal) | Tree
Data: Orange
Coefficients:
Asym xmid scal
3 159 735 401
1 154 627 363
5 207 861 380
2 219 700 332
4 225 711 303
Degrees of freedom: 35 total; 20 residual
Residual standard error: 7.98
> summary(fm1Oran.lis)
Call:
Model: circumference ~ SSlogis(age, Asym, xmid, scal) | Tree
Data: Orange
Coefficients:
Asym
Estimate Std. Error t value Pr(>|t|)
3 159 19.2 8.26 0.000460
1 154 13.6 11.34 0.000169
5 207 22.0 9.41 0.000738
2 219 13.4 16.39 0.000105
4 225 11.8 19.03 0.000104
xmid
Estimate Std. Error t value Pr(>|t|)
3 735 130.8 5.62 0.002011
1 627 92.9 6.75 0.001263
5 861 108.0 7.98 0.001389
2 700 61.4 11.42 0.000435
4 711 51.2 13.89 0.000358
scal
Estimate Std. Error t value Pr(>|t|)
3 401 94.8 4.23 0.00571
1 363 81.2 4.46 0.00586
5 380 66.8 5.69 0.00487
2 332 49.4 6.73 0.00324
4 303 41.6 7.29 0.00415
Residual standard error: 7.98 on 20 degrees of freedom
> plot(intervals(fm1Oran.lis), layout = c(3,1))
> plot(fm1Oran.lis, Tree ~ resid(.), abline = 0)
> Theoph[1:4,]
Grouped Data: conc ~ Time | Subject
Subject Wt Dose Time conc
1 1 79.6 4.02 0.00 0.74
2 1 79.6 4.02 0.25 2.84
3 1 79.6 4.02 0.57 6.57
4 1 79.6 4.02 1.12 10.50
> fm1Theo.lis <- nlsList(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
+ data = Theoph)
> fm1Theo.lis
Call:
Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) | Subject
Data: Theoph
Coefficients:
lKe lKa lCl
6 -2.31 0.152 -2.97
7 -2.28 -0.386 -2.96
8 -2.39 0.319 -3.07
11 -2.32 1.348 -2.86
3 -2.51 0.898 -3.23
2 -2.29 0.664 -3.11
4 -2.44 0.158 -3.29
9 -2.45 2.182 -3.42
12 -2.25 -0.183 -3.17
10 -2.60 -0.363 -3.43
1 -2.92 0.575 -3.92
5 -2.43 0.386 -3.13
Degrees of freedom: 132 total; 96 residual
Residual standard error: 0.7
> plot(intervals(fm1Theo.lis), layout = c(3,1))
> pairs(fm1Theo.lis, id = 0.1)
> # 8.2 Fitting Nonlinear Mixed-Effects Models with nlme
>
> ## no need to specify groups, as Orange is a groupedData object
> ## random is omitted - by default it is equal to fixed
> (fm1Oran.nlme <-
+ nlme(circumference ~ SSlogis(age, Asym, xmid, scal),
+ data = Orange,
+ fixed = Asym + xmid + scal ~ 1,
+ start = fixef(fm1Oran.lis)))
Warning in nlme.formula(circumference ~ SSlogis(age, Asym, xmid, scal), :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Nonlinear mixed-effects model fit by maximum likelihood
Model: circumference ~ SSlogis(age, Asym, xmid, scal)
Data: Orange
Log-likelihood: -130
Fixed: Asym + xmid + scal ~ 1
Asym xmid scal
192 728 357
Random effects:
Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Level: Tree
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym 27.05 Asym xmid
xmid 24.25 -0.328
scal 36.60 -0.992 0.443
Residual 7.32
Number of Observations: 35
Number of Groups: 5
> summary(fm1Oran.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: circumference ~ SSlogis(age, Asym, xmid, scal)
Data: Orange
AIC BIC logLik
280 296 -130
Random effects:
Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
Level: Tree
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym 27.05 Asym xmid
xmid 24.25 -0.328
scal 36.60 -0.992 0.443
Residual 7.32
Fixed effects: Asym + xmid + scal ~ 1
Value Std.Error DF t-value p-value
Asym 192 14.1 28 13.7 0
xmid 728 34.6 28 21.0 0
scal 357 30.5 28 11.7 0
Correlation:
Asym xmid
xmid 0.277
scal -0.193 0.665
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.819 -0.522 0.174 0.518 1.645
Number of Observations: 35
Number of Groups: 5
> summary(fm1Oran.nls)
Formula: circumference ~ logist(age, Asym, xmid, scal)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 192.7 20.2 9.52 7.5e-11 ***
xmid 728.8 107.3 6.79 1.1e-07 ***
scal 353.5 81.5 4.34 0.00013 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.4 on 32 degrees of freedom
Number of iterations to convergence: 5
Achieved convergence tolerance: 4.39e-06
> pairs(fm1Oran.nlme)
> fm2Oran.nlme <- update(fm1Oran.nlme, random = Asym ~ 1)
> anova(fm1Oran.nlme, fm2Oran.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Oran.nlme 1 10 280 296 -130
fm2Oran.nlme 2 5 273 281 -132 1 vs 2 3.19 0.671
> plot(fm1Oran.nlme)
> ## level = 0:1 requests fixed (0) and within-group (1) predictions
> plot(augPred(fm2Oran.nlme, level = 0:1),
+ layout = c(5,1))
> qqnorm(fm2Oran.nlme, abline = c(0,1))
> (fm1Theo.nlme <- nlme(fm1Theo.lis))
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)
Data: Theoph
Log-likelihood: -173
Fixed: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)
lKe lKa lCl
-2.433 0.451 -3.214
Random effects:
Formula: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)
Level: Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
lKe 0.131 lKe lKa
lKa 0.638 0.012
lCl 0.251 0.995 -0.089
Residual 0.682
Number of Observations: 132
Number of Groups: 12
> ## IGNORE_RDIFF_BEGIN
> try( intervals(fm1Theo.nlme, which="var-cov") ) ## could fail: Non-positive definite...
Approximate 95% confidence intervals
Random Effects:
Level: Subject
lower est. upper
sd(lKe) 0.0574 0.1310 0.299
sd(lKa) 0.3845 0.6378 1.058
sd(lCl) 0.1557 0.2512 0.405
cor(lKe,lKa) -0.9302 0.0116 0.933
cor(lKe,lCl) -0.9950 0.9948 1.000
cor(lKa,lCl) -0.7711 -0.0892 0.688
Within-group standard error:
lower est. upper
0.596 0.682 0.780
> ## IGNORE_RDIFF_END
> (fm2Theo.nlme <- update(fm1Theo.nlme,
+ random = pdDiag(lKe + lKa + lCl ~ 1)))
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)
Data: Theoph
Log-likelihood: -177
Fixed: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)
lKe lKa lCl
-2.455 0.466 -3.227
Random effects:
Formula: list(lKe ~ 1, lKa ~ 1, lCl ~ 1)
Level: Subject
Structure: Diagonal
lKe lKa lCl Residual
StdDev: 1.93e-05 0.644 0.167 0.709
Number of Observations: 132
Number of Groups: 12
> fm3Theo.nlme <-
+ update(fm2Theo.nlme, random = pdDiag(lKa + lCl ~ 1))
> anova(fm1Theo.nlme, fm3Theo.nlme, fm2Theo.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Theo.nlme 1 10 367 395 -173
fm3Theo.nlme 2 6 366 383 -177 1 vs 2 7.4 0.116
fm2Theo.nlme 3 7 368 388 -177 2 vs 3 0.0 0.949
> plot(fm3Theo.nlme)
> qqnorm(fm3Theo.nlme, ~ ranef(.))
> CO2
Grouped Data: uptake ~ conc | Plant
Plant Type Treatment conc uptake
1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2
7 Qn1 Quebec nonchilled 1000 39.7
8 Qn2 Quebec nonchilled 95 13.6
9 Qn2 Quebec nonchilled 175 27.3
10 Qn2 Quebec nonchilled 250 37.1
11 Qn2 Quebec nonchilled 350 41.8
12 Qn2 Quebec nonchilled 500 40.6
13 Qn2 Quebec nonchilled 675 41.4
14 Qn2 Quebec nonchilled 1000 44.3
15 Qn3 Quebec nonchilled 95 16.2
16 Qn3 Quebec nonchilled 175 32.4
17 Qn3 Quebec nonchilled 250 40.3
18 Qn3 Quebec nonchilled 350 42.1
19 Qn3 Quebec nonchilled 500 42.9
20 Qn3 Quebec nonchilled 675 43.9
21 Qn3 Quebec nonchilled 1000 45.5
22 Qc1 Quebec chilled 95 14.2
23 Qc1 Quebec chilled 175 24.1
24 Qc1 Quebec chilled 250 30.3
25 Qc1 Quebec chilled 350 34.6
26 Qc1 Quebec chilled 500 32.5
27 Qc1 Quebec chilled 675 35.4
28 Qc1 Quebec chilled 1000 38.7
29 Qc2 Quebec chilled 95 9.3
30 Qc2 Quebec chilled 175 27.3
31 Qc2 Quebec chilled 250 35.0
32 Qc2 Quebec chilled 350 38.8
33 Qc2 Quebec chilled 500 38.6
34 Qc2 Quebec chilled 675 37.5
35 Qc2 Quebec chilled 1000 42.4
36 Qc3 Quebec chilled 95 15.1
37 Qc3 Quebec chilled 175 21.0
38 Qc3 Quebec chilled 250 38.1
39 Qc3 Quebec chilled 350 34.0
40 Qc3 Quebec chilled 500 38.9
41 Qc3 Quebec chilled 675 39.6
42 Qc3 Quebec chilled 1000 41.4
43 Mn1 Mississippi nonchilled 95 10.6
44 Mn1 Mississippi nonchilled 175 19.2
45 Mn1 Mississippi nonchilled 250 26.2
46 Mn1 Mississippi nonchilled 350 30.0
47 Mn1 Mississippi nonchilled 500 30.9
48 Mn1 Mississippi nonchilled 675 32.4
49 Mn1 Mississippi nonchilled 1000 35.5
50 Mn2 Mississippi nonchilled 95 12.0
51 Mn2 Mississippi nonchilled 175 22.0
52 Mn2 Mississippi nonchilled 250 30.6
53 Mn2 Mississippi nonchilled 350 31.8
54 Mn2 Mississippi nonchilled 500 32.4
55 Mn2 Mississippi nonchilled 675 31.1
56 Mn2 Mississippi nonchilled 1000 31.5
57 Mn3 Mississippi nonchilled 95 11.3
58 Mn3 Mississippi nonchilled 175 19.4
59 Mn3 Mississippi nonchilled 250 25.8
60 Mn3 Mississippi nonchilled 350 27.9
61 Mn3 Mississippi nonchilled 500 28.5
62 Mn3 Mississippi nonchilled 675 28.1
63 Mn3 Mississippi nonchilled 1000 27.8
64 Mc1 Mississippi chilled 95 10.5
65 Mc1 Mississippi chilled 175 14.9
66 Mc1 Mississippi chilled 250 18.1
67 Mc1 Mississippi chilled 350 18.9
68 Mc1 Mississippi chilled 500 19.5
69 Mc1 Mississippi chilled 675 22.2
70 Mc1 Mississippi chilled 1000 21.9
71 Mc2 Mississippi chilled 95 7.7
72 Mc2 Mississippi chilled 175 11.4
73 Mc2 Mississippi chilled 250 12.3
74 Mc2 Mississippi chilled 350 13.0
75 Mc2 Mississippi chilled 500 12.5
76 Mc2 Mississippi chilled 675 13.7
77 Mc2 Mississippi chilled 1000 14.4
78 Mc3 Mississippi chilled 95 10.6
79 Mc3 Mississippi chilled 175 18.0
80 Mc3 Mississippi chilled 250 17.9
81 Mc3 Mississippi chilled 350 17.9
82 Mc3 Mississippi chilled 500 17.9
83 Mc3 Mississippi chilled 675 18.9
84 Mc3 Mississippi chilled 1000 19.9
> plot(CO2, outer = ~Treatment*Type, layout = c(4,1))
> (fm1CO2.lis <- nlsList(SSasympOff, CO2))
Call:
Model: uptake ~ SSasympOff(conc, Asym, lrc, c0) | Plant
Data: CO2
Coefficients:
Asym lrc c0
Qn1 38.1 -4.38 51.2
Qn2 42.9 -4.67 55.9
Qn3 44.2 -4.49 54.6
Qc1 36.4 -4.86 31.1
Qc3 40.7 -4.95 35.1
Qc2 39.8 -4.46 72.1
Mn3 28.5 -4.59 47.0
Mn2 32.1 -4.47 56.0
Mn1 34.1 -5.06 36.4
Mc2 13.6 -4.56 13.1
Mc3 18.5 -3.47 67.8
Mc1 21.8 -5.14 -20.4
Degrees of freedom: 84 total; 48 residual
Residual standard error: 1.8
> ## IGNORE_RDIFF_BEGIN
> (fm1CO2.nlme <- nlme(fm1CO2.lis))
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ SSasympOff(conc, Asym, lrc, c0)
Data: CO2
Log-likelihood: -201
Fixed: list(Asym ~ 1, lrc ~ 1, c0 ~ 1)
Asym lrc c0
32.47 -4.64 43.55
Random effects:
Formula: list(Asym ~ 1, lrc ~ 1, c0 ~ 1)
Level: Plant
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym 9.51 Asym lrc
lrc 0.13 -0.165
c0 10.33 0.999 -0.133
Residual 1.77
Number of Observations: 84
Number of Groups: 12
> ## IGNORE_RDIFF_END
> (fm2CO2.nlme <- update(fm1CO2.nlme, random = Asym + lrc ~ 1))
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ SSasympOff(conc, Asym, lrc, c0)
Data: CO2
Log-likelihood: -203
Fixed: list(Asym ~ 1, lrc ~ 1, c0 ~ 1)
Asym lrc c0
32.41 -4.56 49.34
Random effects:
Formula: list(Asym ~ 1, lrc ~ 1)
Level: Plant
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym 9.66 Asym
lrc 0.20 -0.777
Residual 1.81
Number of Observations: 84
Number of Groups: 12
> anova(fm1CO2.nlme, fm2CO2.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm1CO2.nlme 1 10 423 447 -201
fm2CO2.nlme 2 7 420 437 -203 1 vs 2 2.9 0.408
> plot(fm2CO2.nlme,id = 0.05,cex = 0.8,adj = -0.5)
> fm2CO2.nlmeRE <- ranef(fm2CO2.nlme, augFrame = TRUE)
> fm2CO2.nlmeRE
Asym lrc Type Treatment conc uptake
Qn1 6.172 0.04836 Quebec nonchilled 435 33.2
Qn2 10.533 -0.17284 Quebec nonchilled 435 35.2
Qn3 12.218 -0.05799 Quebec nonchilled 435 37.6
Qc1 3.352 -0.07559 Quebec chilled 435 30.0
Qc3 7.474 -0.19242 Quebec chilled 435 32.6
Qc2 7.928 -0.18032 Quebec chilled 435 32.7
Mn3 -4.073 0.03345 Mississippi nonchilled 435 24.1
Mn2 -0.142 0.00565 Mississippi nonchilled 435 27.3
Mn1 0.241 -0.19386 Mississippi nonchilled 435 26.4
Mc2 -18.799 0.31937 Mississippi chilled 435 12.1
Mc3 -13.117 0.29943 Mississippi chilled 435 17.3
Mc1 -11.787 0.16676 Mississippi chilled 435 18.0
> class(fm2CO2.nlmeRE)
[1] "ranef.lme" "data.frame"
> plot(fm2CO2.nlmeRE, form = ~ Type * Treatment)
> contrasts(CO2$Type)
[,1]
Quebec -1
Mississippi 1
> contrasts(CO2$Treatment)
[,1]
nonchilled -1
chilled 1
> fm3CO2.nlme <- update(fm2CO2.nlme,
+ fixed = list(Asym ~ Type * Treatment, lrc + c0 ~ 1),
+ start = c(32.412, 0, 0, 0, -4.5603, 49.344))
> summary(fm3CO2.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ SSasympOff(conc, Asym, lrc, c0)
Data: CO2
AIC BIC logLik
394 418 -187
Random effects:
Formula: list(Asym ~ 1, lrc ~ 1)
Level: Plant
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym.(Intercept) 2.930 As.(I)
lrc 0.164 -0.906
Residual 1.850
Fixed effects: list(Asym ~ Type * Treatment, lrc + c0 ~ 1)
Value Std.Error DF t-value p-value
Asym.(Intercept) 32.4 0.94 67 34.7 0.0000
Asym.Type1 -7.1 0.60 67 -11.9 0.0000
Asym.Treatment1 -3.8 0.59 67 -6.5 0.0000
Asym.Type1:Treatment1 -1.2 0.59 67 -2.0 0.0462
lrc -4.6 0.08 67 -54.1 0.0000
c0 49.5 4.46 67 11.1 0.0000
Correlation:
As.(I) Asym.Ty1 Asym.Tr1 A.T1:T lrc
Asym.Type1 -0.044
Asym.Treatment1 -0.021 0.151
Asym.Type1:Treatment1 -0.023 0.161 0.225
lrc -0.660 0.202 0.113 0.132
c0 -0.113 0.060 0.018 0.063 0.653
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.8929 -0.4616 -0.0328 0.5208 2.8877
Number of Observations: 84
Number of Groups: 12
> anova(fm3CO2.nlme, Terms = 2:4)
F-test for: Asym.Type, Asym.Treatment, Asym.Type:Treatment
numDF denDF F-value p-value
1 3 67 54.8 <.0001
> fm3CO2.nlmeRE <- ranef(fm3CO2.nlme, aug = TRUE)
> plot(fm3CO2.nlmeRE, form = ~ Type * Treatment)
> fm3CO2.fix <- fixef(fm3CO2.nlme)
> fm4CO2.nlme <- update(fm3CO2.nlme,
+ fixed = list(Asym + lrc ~ Type * Treatment, c0 ~ 1),
+ start = c(fm3CO2.fix[1:5], 0, 0, 0, fm3CO2.fix[6]))
Warning in (function (model, data = sys.frame(sys.parent()), fixed, random, :
Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
> ## IGNORE_RDIFF_BEGIN
> summary(fm4CO2.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: uptake ~ SSasympOff(conc, Asym, lrc, c0)
Data: CO2
AIC BIC logLik
388 420 -181
Random effects:
Formula: list(Asym ~ 1, lrc ~ 1)
Level: Plant
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Asym.(Intercept) 2.3496 As.(I)
lrc.(Intercept) 0.0796 -0.92
Residual 1.7920
Fixed effects: list(Asym + lrc ~ Type * Treatment, c0 ~ 1)
Value Std.Error DF t-value p-value
Asym.(Intercept) 32.3 0.78 64 41.2 0.0000
Asym.Type1 -8.0 0.78 64 -10.3 0.0000
Asym.Treatment1 -4.2 0.78 64 -5.4 0.0000
Asym.Type1:Treatment1 -2.7 0.78 64 -3.5 0.0008
lrc.(Intercept) -4.5 0.08 64 -55.7 0.0000
lrc.Type1 0.1 0.06 64 2.4 0.0185
lrc.Treatment1 0.1 0.06 64 1.8 0.0746
lrc.Type1:Treatment1 0.2 0.06 64 3.3 0.0014
c0 50.5 4.36 64 11.6 0.0000
Correlation:
As.(I) Asym.Ty1 Asym.Tr1 A.T1:T lr.(I)
Asym.Type1 -0.017
Asym.Treatment1 -0.010 -0.017
Asym.Type1:Treatment1 -0.020 -0.006 -0.011
lrc.(Intercept) -0.471 0.004 0.001 0.009
lrc.Type1 -0.048 -0.548 -0.005 -0.018 0.402
lrc.Treatment1 -0.031 -0.004 -0.551 -0.033 0.322
lrc.Type1:Treatment1 -0.026 -0.015 -0.032 -0.547 0.351
c0 -0.133 0.038 0.020 0.019 0.735
lrc.Ty1 lrc.Tr1 l.T1:T
Asym.Type1
Asym.Treatment1
Asym.Type1:Treatment1
lrc.(Intercept)
lrc.Type1
lrc.Treatment1 0.375
lrc.Type1:Treatment1 0.395 0.487
c0 0.104 0.083 0.140
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.8621 -0.4944 -0.0422 0.5661 3.0405
Number of Observations: 84
Number of Groups: 12
> ## IGNORE_RDIFF_END
> fm5CO2.nlme <- update(fm4CO2.nlme, random = Asym ~ 1)
> anova(fm4CO2.nlme, fm5CO2.nlme)
Model df AIC BIC logLik Test L.Ratio p-value
fm4CO2.nlme 1 13 388 420 -181
fm5CO2.nlme 2 11 387 414 -182 1 vs 2 2.64 0.268
> CO2$type <- 2 * (as.integer(CO2$Type) - 1.5)
> CO2$treatment <- 2 * (as.integer(CO2$Treatment) - 1.5)
> fm1CO2.nls <- nls(uptake ~ SSasympOff(conc, Asym.Intercept +
+ Asym.Type * type + Asym.Treatment * treatment +
+ Asym.TypeTreatment * type * treatment, lrc.Intercept +
+ lrc.Type * type + lrc.Treatment * treatment +
+ lrc.TypeTreatment * type * treatment, c0), data = CO2,
+ start = c(Asym.Intercept = 32.371, Asym.Type = -8.0086,
+ Asym.Treatment = -4.2001, Asym.TypeTreatment = -2.7253,
+ lrc.Intercept = -4.5267, lrc.Type = 0.13112,
+ lrc.Treatment = 0.093928, lrc.TypeTreatment = 0.17941,
+ c0 = 50.126))
> anova(fm5CO2.nlme, fm1CO2.nls)
Model df AIC BIC logLik Test L.Ratio p-value
fm5CO2.nlme 1 11 387 414 -182
fm1CO2.nls 2 10 418 443 -199 1 vs 2 33.3 <.0001
> # plot(augPred(fm5CO2.nlme, level = 0:1), ## FIXME: problem with levels
> # layout = c(6,2)) ## Actually a problem with contrasts.
> ## This fit just ping-pongs.
> #fm1Quin.nlme <-
> # nlme(conc ~ quinModel(Subject, time, conc, dose, interval,
> # lV, lKa, lCl),
> # data = Quinidine, fixed = lV + lKa + lCl ~ 1,
> # random = pdDiag(lV + lCl ~ 1), groups = ~ Subject,
> # start = list(fixed = c(5, -0.3, 2)),
> # na.action = NULL, naPattern = ~ !is.na(conc), verbose = TRUE)
> #fm1Quin.nlme
> #fm1Quin.nlmeRE <- ranef(fm1Quin.nlme, aug = TRUE)
> #fm1Quin.nlmeRE[1:3,]
> # plot(fm1Quin.nlmeRE, form = lCl ~ Age + Smoke + Ethanol + ## FIXME: problem in max
> # Weight + Race + Height + glyco + Creatinine + Heart,
> # control = list(cex.axis = 0.7))
> #fm1Quin.fix <- fixef(fm1Quin.nlme)
> #fm2Quin.nlme <- update(fm1Quin.nlme,
> # fixed = list(lCl ~ glyco, lKa + lV ~ 1),
> # start = c(fm1Quin.fix[3], 0, fm1Quin.fix[2:1]))
> fm2Quin.nlme <-
+ nlme(conc ~ quinModel(Subject, time, conc, dose, interval,
+ lV, lKa, lCl),
+ data = Quinidine, fixed = list(lCl ~ glyco, lV + lKa ~ 1),
+ random = pdDiag(diag(c(0.3,0.3)), form = lV + lCl ~ 1),
+ groups = ~ Subject,
+ start = list(fixed = c(2.5, 0, 5.4, -0.2)),
+ na.action = NULL, naPattern = ~ !is.na(conc))
> summary(fm2Quin.nlme) # wrong values
Nonlinear mixed-effects model fit by maximum likelihood
Model: conc ~ quinModel(Subject, time, conc, dose, interval, lV, lKa, lCl)
Data: Quinidine
AIC BIC logLik
892 919 -439
Random effects:
Formula: list(lV ~ 1, lCl ~ 1)
Level: Subject
Structure: Diagonal
lV lCl.(Intercept) Residual
StdDev: 0.000263 0.271 0.651
Fixed effects: list(lCl ~ glyco, lV + lKa ~ 1)
Value Std.Error DF t-value p-value
lCl.(Intercept) 3.12 0.0655 222 47.7 0.000
lCl.glyco -0.50 0.0428 222 -11.7 0.000
lV 5.27 0.0948 222 55.6 0.000
lKa -0.84 0.3039 222 -2.8 0.006
Correlation:
lC.(I) lCl.gl lV
lCl.glyco -0.880
lV -0.072 0.027
lKa -0.272 0.149 0.538
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.5458 -0.5342 -0.0221 0.5053 3.5016
Number of Observations: 361
Number of Groups: 136
> options(contrasts = c("contr.treatment", "contr.poly"))
> fm2Quin.fix <- fixef(fm2Quin.nlme)
> ## subsequent fits don't work
> #fm3Quin.nlme <- update(fm2Quin.nlme,
> # fixed = list(lCl ~ glyco + Creatinine, lKa + lV ~ 1),
> # start = c(fm2Quin.fix[1:2], 0.2, fm2Quin.fix[3:4]))
> #summary(fm3Quin.nlme)
> #fm3Quin.fix <- fixef(fm3Quin.nlme)
> #fm4Quin.nlme <- update(fm3Quin.nlme,
> # fixed = list(lCl ~ glyco + Creatinine + Weight, lKa + lV ~ 1),
> # start = c(fm3Quin.fix[1:3], 0, fm3Quin.fix[4:5]))
> #summary(fm4Quin.nlme)
> ## This fit just ping-pongs
> ##fm1Wafer.nlmeR <-
> ## nlme(current ~ A + B * cos(4.5679 * voltage) +
> ## C * sin(4.5679 * voltage), data = Wafer,
> ## fixed = list(A ~ voltage + I(voltage^2), B + C ~ 1),
> ## random = list(Wafer = A ~ voltage + I(voltage^2),
> ## Site = pdBlocked(list(A~1, A~voltage+I(voltage^2)-1))),
> ### start = fixef(fm4Wafer), method = "REML", control = list(tolerance=1e-2))
> ## start = c(-4.255, 5.622, 1.258, -0.09555, 0.10434),
> ## method = "REML", control = list(tolerance = 1e-2))
> ##fm1Wafer.nlmeR
> ##fm1Wafer.nlme <- update(fm1Wafer.nlmeR, method = "ML")
>
> (fm2Wafer.nlme <-
+ nlme(current ~ A + B * cos(w * voltage + pi/4),
+ data = Wafer,
+ fixed = list(A ~ voltage + I(voltage^2), B + w ~ 1),
+ random = list(Wafer = pdDiag(list(A ~ voltage + I(voltage^2), B + w ~ 1)),
+ Site = pdDiag(list(A ~ voltage+I(voltage^2), B ~ 1))),
+ start = c(-4.255, 5.622, 1.258, -0.09555, 4.5679)))
Nonlinear mixed-effects model fit by maximum likelihood
Model: current ~ A + B * cos(w * voltage + pi/4)
Data: Wafer
Log-likelihood: 663
Fixed: list(A ~ voltage + I(voltage^2), B + w ~ 1)
A.(Intercept) A.voltage A.I(voltage^2) B
-4.265 5.633 1.256 -0.141
w
4.593
Random effects:
Formula: list(A ~ voltage + I(voltage^2), B ~ 1, w ~ 1)
Level: Wafer
Structure: Diagonal
A.(Intercept) A.voltage A.I(voltage^2) B w
StdDev: 0.127 0.337 0.0488 0.00506 5.44e-05
Formula: list(A ~ voltage + I(voltage^2), B ~ 1)
Level: Site %in% Wafer
Structure: Diagonal
A.(Intercept) A.voltage A.I(voltage^2) B Residual
StdDev: 0.0618 0.269 0.0559 4.46e-06 0.00786
Number of Observations: 400
Number of Groups:
Wafer Site %in% Wafer
10 80
> plot(fm2Wafer.nlme, resid(.) ~ voltage | Wafer,
+ panel = function(x, y, ...) {
+ panel.grid()
+ panel.xyplot(x, y)
+ panel.loess(x, y, lty = 2)
+ panel.abline(0, 0)
+ })
> ## anova(fm1Wafer.nlme, fm2Wafer.nlme, test = FALSE)
> # intervals(fm2Wafer.nlme)
>
> # 8.3 Extending the Basic nlme Model
>
> #fm4Theo.nlme <- update(fm3Theo.nlme,
> # weights = varConstPower(power = 0.1))
> # this fit is way off
> #fm4Theo.nlme
> #anova(fm3Theo.nlme, fm4Theo.nlme)
> #plot(fm4Theo.nlme)
> ## xlim used to hide an unusually high fitted value and enhance
> ## visualization of the heteroscedastic pattern
> # plot(fm4Quin.nlme, xlim = c(0, 6.2))
> #fm5Quin.nlme <- update(fm4Quin.nlme, weights = varPower())
> #summary(fm5Quin.nlme)
> #anova(fm4Quin.nlme, fm5Quin.nlme)
> #plot(fm5Quin.nlme, xlim = c(0, 6.2))
> var.nlme <- nlme(follicles ~ A + B * sin(2 * pi * w * Time) +
+ C * cos(2 * pi * w *Time), data = Ovary,
+ fixed = A + B + C + w ~ 1, random = pdDiag(A + B + w ~ 1),
+ # start = c(fixef(fm5Ovar.lme), 1))
+ start = c(12.18, -3.298, -0.862, 1))
> ##fm1Ovar.nlme
> ##ACF(fm1Ovar.nlme)
> ##plot(ACF(fm1Ovar.nlme, maxLag = 10), alpha = 0.05)
> ##fm2Ovar.nlme <- update(fm1Ovar.nlme, correlation = corAR1(0.311))
> ##fm3Ovar.nlme <- update(fm1Ovar.nlme, correlation = corARMA(p=0, q=2))
> ##anova(fm2Ovar.nlme, fm3Ovar.nlme, test = FALSE)
> ##intervals(fm2Ovar.nlme)
> ##fm4Ovar.nlme <- update(fm2Ovar.nlme, random = A ~ 1)
> ##anova(fm2Ovar.nlme, fm4Ovar.nlme)
> ##if (interactive()) fm5Ovar.nlme <- update(fm4Ovar.nlme, correlation = corARMA(p=1, q=1))
> # anova(fm4Ovar.nlme, fm5Ovar.nlme)
> # plot(ACF(fm5Ovar.nlme, maxLag = 10, resType = "n"),
> # alpha = 0.05)
> # fm5Ovar.lmeML <- update(fm5Ovar.lme, method = "ML")
> # intervals(fm5Ovar.lmeML)
> # fm6Ovar.lmeML <- update(fm5Ovar.lmeML, random = ~1)
> # anova(fm5Ovar.lmeML, fm6Ovar.lmeML)
> # anova(fm6Ovar.lmeML, fm5Ovar.nlme)
> # intervals(fm5Ovar.nlme, which = "fixed")
> fm1Dial.lis <-
+ nlsList(rate ~ SSasympOff(pressure, Asym, lrc, c0) | QB,
+ data = Dialyzer)
> fm1Dial.lis
Call:
Model: rate ~ SSasympOff(pressure, Asym, lrc, c0) | QB
Data: Dialyzer
Coefficients:
Asym lrc c0
200 45.0 0.765 0.224
300 62.2 0.253 0.225
Degrees of freedom: 140 total; 134 residual
Residual standard error: 3.8
> plot(intervals(fm1Dial.lis))
> fm1Dial.gnls <- gnls(rate ~ SSasympOff(pressure, Asym, lrc, c0),
+ data = Dialyzer, params = list(Asym + lrc ~ QB, c0 ~ 1),
+ start = c(53.6, 8.6, 0.51, -0.26, 0.225))
> fm1Dial.gnls
Generalized nonlinear least squares fit
Model: rate ~ SSasympOff(pressure, Asym, lrc, c0)
Data: Dialyzer
Log-likelihood: -383
Coefficients:
Asym.(Intercept) Asym.QB300 lrc.(Intercept)
44.986 17.240 0.766
lrc.QB300 c0
-0.514 0.224
Degrees of freedom: 140 total; 135 residual
Residual standard error: 3.79
> Dialyzer$QBcontr <- 2 * (Dialyzer$QB == 300) - 1
> fm1Dial.nls <-
+ nls(rate ~ SSasympOff(pressure, Asym.Int + Asym.QB * QBcontr,
+ lrc.Int + lrc.QB * QBcontr, c0), data = Dialyzer,
+ start = c(Asym.Int = 53.6, Asym.QB = 8.6, lrc.Int = 0.51,
+ lrc.QB = -0.26, c0 = 0.225))
> ## IGNORE_RDIFF_BEGIN
> summary(fm1Dial.nls)
Formula: rate ~ SSasympOff(pressure, Asym.Int + Asym.QB * QBcontr, lrc.Int +
lrc.QB * QBcontr, c0)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym.Int 53.6065 0.7054 75.99 < 2e-16 ***
Asym.QB 8.6201 0.6792 12.69 < 2e-16 ***
lrc.Int 0.5087 0.0552 9.21 5.5e-16 ***
lrc.QB -0.2568 0.0450 -5.70 7.0e-08 ***
c0 0.2245 0.0106 21.13 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.79 on 135 degrees of freedom
Number of iterations to convergence: 4
Achieved convergence tolerance: 7.24e-06
> ## IGNORE_RDIFF_END
> logLik(fm1Dial.nls)
'log Lik.' -383 (df=6)
> plot(fm1Dial.gnls, resid(.) ~ pressure, abline = 0)
> fm2Dial.gnls <- update(fm1Dial.gnls,
+ weights = varPower(form = ~ pressure))
> anova(fm1Dial.gnls, fm2Dial.gnls)
Model df AIC BIC logLik Test L.Ratio p-value
fm1Dial.gnls 1 6 777 795 -383
fm2Dial.gnls 2 7 748 769 -367 1 vs 2 30.8 <.0001
> ACF(fm2Dial.gnls, form = ~ 1 | Subject)
lag ACF
1 0 1.00000
2 1 0.71567
3 2 0.50454
4 3 0.29481
5 4 0.20975
6 5 0.13857
7 6 -0.00202
> plot(ACF(fm2Dial.gnls, form = ~ 1 | Subject), alpha = 0.05)
> fm3Dial.gnls <-
+ update(fm2Dial.gnls, corr = corAR1(0.716, form = ~ 1 | Subject))
> fm3Dial.gnls
Generalized nonlinear least squares fit
Model: rate ~ SSasympOff(pressure, Asym, lrc, c0)
Data: Dialyzer
Log-likelihood: -323
Coefficients:
Asym.(Intercept) Asym.QB300 lrc.(Intercept)
46.911 16.400 0.542
lrc.QB300 c0
-0.339 0.215
Correlation Structure: AR(1)
Formula: ~1 | Subject
Parameter estimate(s):
Phi
0.744
Variance function:
Structure: Power of variance covariate
Formula: ~pressure
Parameter estimates:
power
0.572
Degrees of freedom: 140 total; 135 residual
Residual standard error: 3.18
> intervals(fm3Dial.gnls)
Approximate 95% confidence intervals
Coefficients:
lower est. upper
Asym.(Intercept) 43.877 46.911 49.945
Asym.QB300 11.633 16.400 21.167
lrc.(Intercept) 0.435 0.542 0.648
lrc.QB300 -0.487 -0.339 -0.192
c0 0.206 0.215 0.223
Correlation structure:
lower est. upper
Phi 0.622 0.744 0.831
Variance function:
lower est. upper
power 0.443 0.572 0.702
Residual standard error:
lower est. upper
2.59 3.13 3.77
> anova(fm2Dial.gnls, fm3Dial.gnls)
Model df AIC BIC logLik Test L.Ratio p-value
fm2Dial.gnls 1 7 748 769 -367
fm3Dial.gnls 2 8 661 685 -323 1 vs 2 89.4 <.0001
> # restore two fitted models
> fm2Dial.lme <-
+ lme(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
+ Dialyzer, ~ pressure + I(pressure^2),
+ weights = varPower(form = ~ pressure))
> fm2Dial.lmeML <- update(fm2Dial.lme, method = "ML")
> fm3Dial.gls <-
+ gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
+ Dialyzer, weights = varPower(form = ~ pressure),
+ corr = corAR1(0.771, form = ~ 1 | Subject))
> fm3Dial.glsML <- update(fm3Dial.gls, method = "ML")
> anova( fm2Dial.lmeML, fm3Dial.glsML, fm3Dial.gnls, test = FALSE)
Model df AIC BIC logLik
fm2Dial.lmeML 1 18 652 705 -308
fm3Dial.glsML 2 13 648 686 -311
fm3Dial.gnls 3 8 661 685 -323
> # cleanup
>
> summary(warnings())
No warnings
>
> proc.time()
user system elapsed
61.627 0.112 61.765
|