File: corExp.Rd

package info (click to toggle)
nlme 3.1.77-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 2,964 kB
  • ctags: 264
  • sloc: ansic: 3,135; sh: 22; makefile: 6
file content (115 lines) | stat: -rw-r--r-- 4,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
% $Id: corExp.Rd,v 1.5.2.1 2002/08/09 19:45:29 bates Exp $
\name{corExp}
\title{Exponential Correlation Structure}
\usage{
corExp(value, form, nugget, metric, fixed)
}
\alias{corExp}
\arguments{
 \item{value}{an optional vector with the parameter values in
   constrained form. If \code{nugget} is \code{FALSE}, \code{value} can
   have only one element, corresponding to the "range" of the
   exponential correlation structure, which must be greater than
   zero. If \code{nugget} is \code{TRUE}, meaning that a nugget effect
   is present, \code{value} can contain one or two elements, the first
   being the "range" and the second the "nugget effect" (one minus the
   correlation between two observations taken arbitrarily close
   together); the first must be greater than zero and the second must be
   between zero and one. Defaults to \code{numeric(0)}, which results in
   a range of 90\% of the minimum distance and a nugget effect of 0.1
   being assigned to the parameters when \code{object} is initialized.}
 \item{form}{a one sided formula of the form \code{~ S1+...+Sp}, or
   \code{~ S1+...+Sp | g}, specifying spatial covariates \code{S1}
   through \code{Sp} and,  optionally, a grouping factor \code{g}. 
   When a grouping factor is present in \code{form}, the correlation
   structure is assumed to apply only to observations within the same
   grouping level; observations with different grouping levels are
   assumed to be uncorrelated. Defaults to \code{~ 1}, which corresponds
   to using the order of the observations in the data as a covariate,
   and no groups.}   
 \item{nugget}{an optional logical value indicating whether a nugget
   effect is present. Defaults to \code{FALSE}.}
 \item{metric}{an optional character string specifying the distance
   metric to be used. The currently available options are
   \code{"euclidean"} for the root sum-of-squares of distances;
   \code{"maximum"} for the maximum difference; and \code{"manhattan"}
   for the sum of the absolute differences. Partial matching of
   arguments is used, so only the first three characters need to be
   provided. Defaults to \code{"euclidean"}.}
 \item{fixed}{an optional logical value indicating whether the
   coefficients should be allowed to vary in the optimization, or kept
   fixed at their initial value. Defaults to \code{FALSE}, in which case
   the coefficients are allowed to vary.}
}
\description{
  This function is a constructor for the \code{corExp} class,
  representing an exponential spatial correlation structure. Letting
  \eqn{d} denote the range and \eqn{n} denote the nugget
  effect, the correlation between two observations a distance
  \eqn{r} apart is \eqn{\exp(-r/d)}{exp(-r/d)} when no nugget effect
  is present and \eqn{(1-n) \exp(-r/d)}{(1-n)*exp(-r/d)} when a nugget
  effect is assumed. Objects created using this constructor must later be
  initialized using the appropriate \code{Initialize} method.
}
\value{
  an object of class \code{corExp}, also inheriting from class
  \code{corSpatial}, representing an exponential spatial correlation
  structure. 
}
\references{
  Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.
  Venables, W.N. and Ripley, B.D. (1997) "Modern Applied Statistics with
  S-plus", 2nd Edition, Springer-Verlag.
  
  Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed
  Models", SAS Institute.

  Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models
  in S and S-PLUS", Springer, esp. p. 238.      
}
\author{Jose Pinheiro \email{Jose.Pinheiro@pharma.novartis.com} and Douglas Bates \email{bates@stat.wisc.edu}}

\seealso{
  \code{\link{corClasses}},
  \code{\link{Initialize.corStruct}},
  \code{\link{summary.corStruct}},
  \code{\link[stats]{dist}}
}
\examples{
sp1 <- corExp(form = ~ x + y + z)

# Pinheiro and Bates, p. 238
spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)

cs1Exp <- corExp(1, form = ~ x + y)
cs1Exp <- Initialize(cs1Exp, spatDat)
corMatrix(cs1Exp)

cs2Exp <- corExp(1, form = ~ x + y, metric = "man")
cs2Exp <- Initialize(cs2Exp, spatDat)
corMatrix(cs2Exp)

cs3Exp <- corExp(c(1, 0.2), form = ~ x + y,
                 nugget = TRUE)
cs3Exp <- Initialize(cs3Exp, spatDat)
corMatrix(cs3Exp)

# example lme(..., corExp ...)
# Pinheiro and Bates, pp. 222-247
# p. 222
options(contrasts = c("contr.treatment", "contr.poly"))
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,
                   random = ~ Time)
# p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
# p. 246
fm3BW.lme <- update(fm2BW.lme,
           correlation = corExp(form = ~ Time))
# p. 247
fm4BW.lme <-
      update(fm3BW.lme, correlation = corExp(form =  ~ Time,
                        nugget = TRUE))
anova(fm3BW.lme, fm4BW.lme)

}
\keyword{models}