File: logLik.lme.Rd

package info (click to toggle)
nlme 3.1.77-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 2,964 kB
  • ctags: 264
  • sloc: ansic: 3,135; sh: 22; makefile: 6
file content (49 lines) | stat: -rw-r--r-- 1,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
% $Id: logLik.lme.Rd,v 1.7.2.1 2003/04/17 22:28:45 bates Exp $
\name{logLik.lme}
\title{Log-Likelihood of an lme Object}
\usage{
\method{logLik}{lme}(object, REML, \dots)
}
\alias{logLik.lme}
\alias{logLik.gls}
\arguments{
 \item{object}{an object inheriting from class \code{lme}, representing
   a fitted linear mixed-effects model.}
 \item{REML}{an optional logical value. If \code{TRUE} the restricted
   log-likelihood is returned, else, if \code{FALSE}, the log-likelihood
   is returned. Defaults to \code{FALSE}. }
 \item{\dots}{some methods for this generic require additional
    arguments.  None are used in this method.} 
}
\description{
  If \code{REML=FALSE}, returns the log-likelihood value of the linear
  mixed-effects model represented by \code{object} evaluated at the
  estimated  coefficients; else, the restricted log-likelihood evaluated
  at the estimated coefficients is returned.
}
\value{
  the (restricted) log-likelihood of the model represented by
  \code{object} evaluated at the estimated coefficients.
}
\references{
  Harville, D.A. (1974) ``Bayesian Inference for Variance Components
  Using Only Error Contrasts'', \emph{Biometrika}, \bold{61}, 383--385.

  Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models
  in S and S-PLUS", Springer.  
}
\author{Jose Pinheiro and Douglas Bates}
\seealso{\code{\link{lme}},\code{\link{gls}},
  \code{\link{logLik.corStruct}},
  \code{\link{logLik.glsStruct}},
  \code{\link{logLik.lmeStruct}},
  \code{\link{logLik.lmList}},
  \code{\link{logLik.reStruct}},
  \code{\link{logLik.varFunc}},
}
\examples{
fm1 <- lme(distance ~ Sex * age, Orthodont, random = ~ age, method = "ML")
logLik(fm1)
logLik(fm1, REML = TRUE)
}
\keyword{models}