1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
% File nlme/man/Variogram.corLin.Rd
% Part of the nlme package for R
% Distributed under GPL 2 or later: see nlme/LICENCE
% $Id: Variogram.corLin.Rd,v 1.7.2.1 2002/08/09 19:45:29 bates Exp $
\name{Variogram.corLin}
\title{Calculate Semi-variogram for a corLin Object}
\usage{
\method{Variogram}{corLin}(object, distance, sig2, length.out, \dots)
}
\alias{Variogram.corLin}
\arguments{
\item{object}{an object inheriting from class \code{corLin},
representing an Linear spatial correlation structure.}
\item{distance}{an optional numeric vector with the distances at
which the semi-variogram is to be calculated. Defaults to
\code{NULL}, in which case a sequence of length \code{length.out}
between the minimum and maximum values of
\code{getCovariate(object)} is used.}
\item{sig2}{an optional numeric value representing the process
variance. Defaults to \code{1}.}
\item{length.out}{an optional integer specifying the length of the
sequence of distances to be used for calculating the semi-variogram,
when \code{distance = NULL}. Defaults to \code{50}.}
\item{\dots}{some methods for this generic require additional
arguments. None are used in this method.}
}
\description{
This method function calculates the semi-variogram values
corresponding to the Linear correlation model, using the estimated
coefficients corresponding to \code{object}, at the distances defined
by \code{distance}.
}
\value{
a data frame with columns \code{variog} and \code{dist} representing,
respectively, the semi-variogram values and the corresponding
distances. The returned value inherits from class \code{Variogram}.
}
\references{
Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.
}
\author{Jose Pinheiro \email{Jose.Pinheiro@pharma.novartis.com} and Douglas Bates \email{bates@stat.wisc.edu}}
\seealso{
\code{\link{corLin}},
\code{\link{plot.Variogram}},
\code{\link{Variogram}}
}
\examples{
cs1 <- corLin(15, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]
}
\keyword{models}
|