1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
/* Copyright (c) 2007-2014 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include "nlopt-internal.h"
/*********************************************************************/
#ifndef HAVE_ISNAN
static int my_isnan(double x) { return x != x; }
# define isnan my_isnan
#endif
/*********************************************************************/
#include "praxis.h"
#include "direct.h"
#ifdef WITH_CXX
# include "stogo.h"
#endif
#include "cdirect.h"
#include "luksan.h"
#include "crs.h"
#include "mlsl.h"
#include "mma.h"
#include "cobyla.h"
#include "newuoa.h"
#include "neldermead.h"
#include "auglag.h"
#include "bobyqa.h"
#include "isres.h"
#include "esch.h"
#include "slsqp.h"
/*********************************************************************/
static double f_bound(int n, const double *x, void *data_)
{
int i;
nlopt_opt data = (nlopt_opt) data_;
double f;
/* some methods do not support bound constraints, but support
discontinuous objectives so we can just return Inf for invalid x */
for (i = 0; i < n; ++i)
if (x[i] < data->lb[i] || x[i] > data->ub[i])
return HUGE_VAL;
f = data->f((unsigned) n, x, NULL, data->f_data);
return (isnan(f) || nlopt_isinf(f) ? HUGE_VAL : f);
}
static double f_noderiv(int n, const double *x, void *data_)
{
nlopt_opt data = (nlopt_opt) data_;
return data->f((unsigned) n, x, NULL, data->f_data);
}
static double f_direct(int n, const double *x, int *undefined, void *data_)
{
nlopt_opt data = (nlopt_opt) data_;
double *work = (double*) data->work;
double f;
unsigned i, j;
f = data->f((unsigned) n, x, NULL, data->f_data);
*undefined = isnan(f) || nlopt_isinf(f);
if (nlopt_get_force_stop(data)) return f;
for (i = 0; i < data->m && !*undefined; ++i) {
nlopt_eval_constraint(work, NULL, data->fc+i, (unsigned) n, x);
if (nlopt_get_force_stop(data)) return f;
for (j = 0; j < data->fc[i].m; ++j)
if (work[j] > 0)
*undefined = 1;
}
return f;
}
/*********************************************************************/
/* get min(dx) for algorithms requiring a scalar initial step size */
static nlopt_result initial_step(nlopt_opt opt, const double *x, double *step)
{
unsigned freedx = 0, i;
if (!opt->dx) {
freedx = 1;
if (nlopt_set_default_initial_step(opt, x) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
}
*step = HUGE_VAL;
for (i = 0; i < opt->n; ++i)
if (*step > fabs(opt->dx[i]))
*step = fabs(opt->dx[i]);
if (freedx) { free(opt->dx); opt->dx = NULL; }
return NLOPT_SUCCESS;
}
/*********************************************************************/
/* return true if [lb,ub] is finite in every dimension (n dimensions) */
static int finite_domain(unsigned n, const double *lb, const double *ub)
{
unsigned i;
for (i = 0; i < n; ++i)
if (nlopt_isinf(ub[i] - lb[i])) return 0;
return 1;
}
/*********************************************************************/
/* wrapper functions, only for derivative-free methods, that
eliminate dimensions with lb == ub. (The gradient-based methods
should handle this case directly, since they operate on much
larger vectors where I am loathe to make copies unnecessarily.) */
typedef struct {
nlopt_func f;
nlopt_mfunc mf;
void *f_data;
unsigned n; /* true dimension */
double *x; /* scratch vector of length n */
double *grad; /* optional scratch vector of length n */
const double *lb, *ub; /* bounds, of length n */
} elimdim_data;
static void *elimdim_makedata(nlopt_func f, nlopt_mfunc mf, void *f_data,
unsigned n, double *x, const double *lb,
const double *ub, double *grad)
{
elimdim_data *d = (elimdim_data *) malloc(sizeof(elimdim_data));
if (!d) return NULL;
d->f = f; d->mf = mf; d->f_data = f_data; d->n = n; d->x = x;
d->lb = lb; d->ub = ub;
d->grad = grad;
return d;
}
static double elimdim_func(unsigned n0, const double *x0, double *grad, void *d_)
{
elimdim_data *d = (elimdim_data *) d_;
double *x = d->x;
const double *lb = d->lb, *ub = d->ub;
double val;
unsigned n = d->n, i, j;
(void) n0; /* unused */
for (i = j = 0; i < n; ++i) {
if (lb[i] == ub[i])
x[i] = lb[i];
else /* assert: j < n0 */
x[i] = x0[j++];
}
val = d->f(n, x, grad ? d->grad : NULL, d->f_data);
if (grad) {
/* assert: d->grad != NULL */
for (i = j = 0; i < n; ++i)
if (lb[i] != ub[i])
grad[j++] = d->grad[i];
}
return val;
}
static void elimdim_mfunc(unsigned m, double *result,
unsigned n0, const double *x0, double *grad, void *d_)
{
elimdim_data *d = (elimdim_data *) d_;
double *x = d->x;
const double *lb = d->lb, *ub = d->ub;
unsigned n = d->n, i, j;
(void) n0; /* unused */
(void) grad; /* assert: grad == NULL */
for (i = j = 0; i < n; ++i) {
if (lb[i] == ub[i])
x[i] = lb[i];
else /* assert: j < n0 */
x[i] = x0[j++];
}
d->mf(m, result, n, x, NULL, d->f_data);
}
/* compute the eliminated dimension: number of dims with lb[i] != ub[i] */
static unsigned elimdim_dimension(unsigned n, const double *lb, const double *ub)
{
unsigned n0 = 0, i;
for (i = 0; i < n; ++i) n0 += lb[i] != ub[i] ? 1U : 0;
return n0;
}
/* modify v to "shrunk" version, with dimensions for lb[i] == ub[i] elim'ed */
static void elimdim_shrink(unsigned n, double *v,
const double *lb, const double *ub)
{
unsigned i, j;
if (v)
for (i = j = 0; i < n; ++i)
if (lb[i] != ub[i])
v[j++] = v[i];
}
/* inverse of elimdim_shrink */
static void elimdim_expand(unsigned n, double *v,
const double *lb, const double *ub)
{
unsigned i, j;
if (v && n > 0) {
j = elimdim_dimension(n, lb, ub) - 1;
for (i = n - 1; i > 0; --i) {
if (lb[i] != ub[i])
v[i] = v[j--];
else
v[i] = lb[i];
}
if (lb[0] == ub[0])
v[0] = lb[0];
}
}
/* given opt, create a new opt with equal-constraint dimensions eliminated */
static nlopt_opt elimdim_create(nlopt_opt opt)
{
nlopt_opt opt0 = nlopt_copy(opt);
double *x, *grad = NULL;
unsigned i;
if (!opt0) return NULL;
x = (double *) malloc(sizeof(double) * opt->n);
if (opt->n && !x) { nlopt_destroy(opt0); return NULL; }
if (opt->algorithm == NLOPT_GD_STOGO
|| opt->algorithm == NLOPT_GD_STOGO_RAND) {
grad = (double *) malloc(sizeof(double) * opt->n);
if (opt->n && !grad) goto bad;
}
opt0->n = elimdim_dimension(opt->n, opt->lb, opt->ub);
elimdim_shrink(opt->n, opt0->lb, opt->lb, opt->ub);
elimdim_shrink(opt->n, opt0->ub, opt->lb, opt->ub);
elimdim_shrink(opt->n, opt0->xtol_abs, opt->lb, opt->ub);
elimdim_shrink(opt->n, opt0->dx, opt->lb, opt->ub);
opt0->munge_on_destroy = opt0->munge_on_copy = NULL;
opt0->f = elimdim_func;
opt0->f_data = elimdim_makedata(opt->f, NULL, opt->f_data,
opt->n, x, opt->lb, opt->ub, grad);
if (!opt0->f_data) goto bad;
for (i = 0; i < opt->m; ++i) {
opt0->fc[i].f = elimdim_func;
opt0->fc[i].mf = elimdim_mfunc;
opt0->fc[i].f_data = elimdim_makedata(opt->fc[i].f, opt->fc[i].mf,
opt->fc[i].f_data,
opt->n, x, opt->lb, opt->ub,
NULL);
if (!opt0->fc[i].f_data) goto bad;
}
for (i = 0; i < opt->p; ++i) {
opt0->h[i].f = elimdim_func;
opt0->h[i].mf = elimdim_mfunc;
opt0->h[i].f_data = elimdim_makedata(opt->h[i].f, opt->h[i].mf,
opt->h[i].f_data,
opt->n, x, opt->lb, opt->ub,
NULL);
if (!opt0->h[i].f_data) goto bad;
}
return opt0;
bad:
free(grad);
free(x);
nlopt_destroy(opt0);
return NULL;
}
/* like nlopt_destroy, but also frees elimdim_data */
static void elimdim_destroy(nlopt_opt opt)
{
unsigned i;
if (!opt) return;
free(((elimdim_data*) opt->f_data)->x);
free(((elimdim_data*) opt->f_data)->grad);
free(opt->f_data); opt->f_data = NULL;
for (i = 0; i < opt->m; ++i) {
free(opt->fc[i].f_data);
opt->fc[i].f_data = NULL;
}
for (i = 0; i < opt->p; ++i) {
free(opt->h[i].f_data);
opt->h[i].f_data = NULL;
}
nlopt_destroy(opt);
}
/* return whether to use elimdim wrapping. */
static int elimdim_wrapcheck(nlopt_opt opt)
{
if (!opt) return 0;
if (elimdim_dimension(opt->n, opt->lb, opt->ub) == opt->n) return 0;
switch (opt->algorithm) {
case NLOPT_GN_DIRECT:
case NLOPT_GN_DIRECT_L:
case NLOPT_GN_DIRECT_L_RAND:
case NLOPT_GN_DIRECT_NOSCAL:
case NLOPT_GN_DIRECT_L_NOSCAL:
case NLOPT_GN_DIRECT_L_RAND_NOSCAL:
case NLOPT_GN_ORIG_DIRECT:
case NLOPT_GN_ORIG_DIRECT_L:
case NLOPT_GN_CRS2_LM:
case NLOPT_LN_PRAXIS:
case NLOPT_LN_COBYLA:
case NLOPT_LN_NEWUOA:
case NLOPT_LN_NEWUOA_BOUND:
case NLOPT_LN_BOBYQA:
case NLOPT_LN_NELDERMEAD:
case NLOPT_LN_SBPLX:
case NLOPT_GN_ISRES:
case NLOPT_GN_ESCH:
case NLOPT_GD_STOGO:
case NLOPT_GD_STOGO_RAND:
return 1;
default: return 0;
}
}
/*********************************************************************/
#define POP(defaultpop) (opt->stochastic_population > 0 ? \
opt->stochastic_population : \
(nlopt_stochastic_population > 0 ? \
nlopt_stochastic_population : (defaultpop)))
/* unlike nlopt_optimize() below, only handles minimization case */
static nlopt_result nlopt_optimize_(nlopt_opt opt, double *x, double *minf)
{
const double *lb, *ub;
nlopt_algorithm algorithm;
nlopt_func f; void *f_data;
unsigned n, i;
int ni;
nlopt_stopping stop;
if (!opt || !x || !minf || !opt->f
|| opt->maximize) return NLOPT_INVALID_ARGS;
/* reset stopping flag */
nlopt_set_force_stop(opt, 0);
opt->force_stop_child = NULL;
/* copy a few params to local vars for convenience */
n = opt->n;
ni = (int) n; /* most of the subroutines take "int" arg */
lb = opt->lb; ub = opt->ub;
algorithm = opt->algorithm;
f = opt->f; f_data = opt->f_data;
if (n == 0) { /* trivial case: no degrees of freedom */
*minf = opt->f(n, x, NULL, opt->f_data);
return NLOPT_SUCCESS;
}
*minf = HUGE_VAL;
/* make sure rand generator is inited */
nlopt_srand_time_default(); /* default is non-deterministic */
/* check bound constraints */
for (i = 0; i < n; ++i)
if (lb[i] > ub[i] || x[i] < lb[i] || x[i] > ub[i])
return NLOPT_INVALID_ARGS;
stop.n = n;
stop.minf_max = opt->stopval;
stop.ftol_rel = opt->ftol_rel;
stop.ftol_abs = opt->ftol_abs;
stop.xtol_rel = opt->xtol_rel;
stop.xtol_abs = opt->xtol_abs;
stop.nevals = 0;
stop.maxeval = opt->maxeval;
stop.maxtime = opt->maxtime;
stop.start = nlopt_seconds();
stop.force_stop = &(opt->force_stop);
switch (algorithm) {
case NLOPT_GN_DIRECT:
case NLOPT_GN_DIRECT_L:
case NLOPT_GN_DIRECT_L_RAND:
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
return cdirect(ni, f, f_data,
lb, ub, x, minf, &stop, 0.0,
(algorithm != NLOPT_GN_DIRECT)
+ 3 * (algorithm == NLOPT_GN_DIRECT_L_RAND
? 2 : (algorithm != NLOPT_GN_DIRECT))
+ 9 * (algorithm == NLOPT_GN_DIRECT_L_RAND
? 1 : (algorithm != NLOPT_GN_DIRECT)));
case NLOPT_GN_DIRECT_NOSCAL:
case NLOPT_GN_DIRECT_L_NOSCAL:
case NLOPT_GN_DIRECT_L_RAND_NOSCAL:
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
return cdirect_unscaled(ni, f, f_data, lb, ub, x, minf,
&stop, 0.0,
(algorithm != NLOPT_GN_DIRECT)
+ 3 * (algorithm == NLOPT_GN_DIRECT_L_RAND ? 2 : (algorithm != NLOPT_GN_DIRECT))
+ 9 * (algorithm == NLOPT_GN_DIRECT_L_RAND ? 1 : (algorithm != NLOPT_GN_DIRECT)));
case NLOPT_GN_ORIG_DIRECT:
case NLOPT_GN_ORIG_DIRECT_L: {
direct_return_code dret;
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
opt->work = malloc(sizeof(double) *
nlopt_max_constraint_dim(opt->m,
opt->fc));
if (!opt->work) return NLOPT_OUT_OF_MEMORY;
dret = direct_optimize(f_direct, opt, ni, lb, ub, x, minf,
stop.maxeval, -1,
stop.start, stop.maxtime,
0.0, 0.0,
pow(stop.xtol_rel, (double) n), -1.0,
stop.force_stop,
stop.minf_max, 0.0,
NULL,
algorithm == NLOPT_GN_ORIG_DIRECT
? DIRECT_ORIGINAL
: DIRECT_GABLONSKY);
free(opt->work); opt->work = NULL;
switch (dret) {
case DIRECT_INVALID_BOUNDS:
case DIRECT_MAXFEVAL_TOOBIG:
case DIRECT_INVALID_ARGS:
return NLOPT_INVALID_ARGS;
case DIRECT_INIT_FAILED:
case DIRECT_SAMPLEPOINTS_FAILED:
case DIRECT_SAMPLE_FAILED:
return NLOPT_FAILURE;
case DIRECT_MAXFEVAL_EXCEEDED:
case DIRECT_MAXITER_EXCEEDED:
return NLOPT_MAXEVAL_REACHED;
case DIRECT_MAXTIME_EXCEEDED:
return NLOPT_MAXTIME_REACHED;
case DIRECT_GLOBAL_FOUND:
return NLOPT_MINF_MAX_REACHED;
case DIRECT_VOLTOL:
case DIRECT_SIGMATOL:
return NLOPT_XTOL_REACHED;
case DIRECT_OUT_OF_MEMORY:
return NLOPT_OUT_OF_MEMORY;
case DIRECT_FORCED_STOP:
return NLOPT_FORCED_STOP;
}
break;
}
case NLOPT_GD_STOGO:
case NLOPT_GD_STOGO_RAND:
#ifdef WITH_CXX
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
if (!stogo_minimize(ni, f, f_data, x, minf, lb, ub, &stop,
algorithm == NLOPT_GD_STOGO
? 0 : (int) POP(2*n)))
return NLOPT_FAILURE;
break;
#else
return NLOPT_INVALID_ARGS;
#endif
#if 0
/* lacking a free/open-source license, we no longer use
Rowan's code, and instead use by "sbplx" re-implementation */
case NLOPT_LN_SUBPLEX: {
int iret, freedx = 0;
if (!opt->dx) {
freedx = 1;
if (nlopt_set_default_initial_step(opt, x) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
}
iret = nlopt_subplex(f_bound, minf, x, n, opt, &stop, opt->dx);
if (freedx) { free(opt->dx); opt->dx = NULL; }
switch (iret) {
case -2: return NLOPT_INVALID_ARGS;
case -20: return NLOPT_FORCED_STOP;
case -10: return NLOPT_MAXTIME_REACHED;
case -1: return NLOPT_MAXEVAL_REACHED;
case 0: return NLOPT_XTOL_REACHED;
case 1: return NLOPT_SUCCESS;
case 2: return NLOPT_MINF_MAX_REACHED;
case 20: return NLOPT_FTOL_REACHED;
case -200: return NLOPT_OUT_OF_MEMORY;
default: return NLOPT_FAILURE; /* unknown return code */
}
break;
}
#endif
case NLOPT_LN_PRAXIS: {
double step;
if (initial_step(opt, x, &step) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
return praxis_(0.0, DBL_EPSILON,
step, ni, x, f_bound, opt, &stop, minf);
}
case NLOPT_LD_LBFGS:
return luksan_plis(ni, f, f_data, lb, ub, x, minf,
&stop, opt->vector_storage);
case NLOPT_LD_VAR1:
case NLOPT_LD_VAR2:
return luksan_plip(ni, f, f_data, lb, ub, x, minf,
&stop, opt->vector_storage,
algorithm == NLOPT_LD_VAR1 ? 1 : 2);
case NLOPT_LD_TNEWTON:
case NLOPT_LD_TNEWTON_RESTART:
case NLOPT_LD_TNEWTON_PRECOND:
case NLOPT_LD_TNEWTON_PRECOND_RESTART:
return luksan_pnet(ni, f, f_data, lb, ub, x, minf,
&stop, opt->vector_storage,
1 + (algorithm - NLOPT_LD_TNEWTON) % 2,
1 + (algorithm - NLOPT_LD_TNEWTON) / 2);
case NLOPT_GN_CRS2_LM:
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
return crs_minimize(ni, f, f_data, lb, ub, x, minf, &stop,
(int) POP(0), 0);
case NLOPT_G_MLSL:
case NLOPT_G_MLSL_LDS:
case NLOPT_GN_MLSL:
case NLOPT_GD_MLSL:
case NLOPT_GN_MLSL_LDS:
case NLOPT_GD_MLSL_LDS: {
nlopt_opt local_opt = opt->local_opt;
nlopt_result ret;
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
if (!local_opt && (algorithm == NLOPT_G_MLSL
|| algorithm == NLOPT_G_MLSL_LDS))
return NLOPT_INVALID_ARGS;
if (!local_opt) { /* default */
nlopt_algorithm local_alg = (algorithm == NLOPT_GN_MLSL ||
algorithm == NLOPT_GN_MLSL_LDS)
? nlopt_local_search_alg_nonderiv
: nlopt_local_search_alg_deriv;
/* don't call MLSL recursively! */
if (local_alg >= NLOPT_GN_MLSL
&& local_alg <= NLOPT_GD_MLSL_LDS)
local_alg = (algorithm == NLOPT_GN_MLSL ||
algorithm == NLOPT_GN_MLSL_LDS)
? NLOPT_LN_COBYLA : NLOPT_LD_MMA;
local_opt = nlopt_create(local_alg, n);
if (!local_opt) return NLOPT_FAILURE;
nlopt_set_ftol_rel(local_opt, opt->ftol_rel);
nlopt_set_ftol_abs(local_opt, opt->ftol_abs);
nlopt_set_xtol_rel(local_opt, opt->xtol_rel);
nlopt_set_xtol_abs(local_opt, opt->xtol_abs);
nlopt_set_maxeval(local_opt, nlopt_local_search_maxeval);
}
if (opt->dx) nlopt_set_initial_step(local_opt, opt->dx);
for (i = 0; i < n && stop.xtol_abs[i] > 0; ++i) ;
if (local_opt->ftol_rel <= 0 && local_opt->ftol_abs <= 0 &&
local_opt->xtol_rel <= 0 && i < n) {
/* it is not sensible to call MLSL without *some*
nonzero tolerance for the local search */
nlopt_set_ftol_rel(local_opt, 1e-15);
nlopt_set_xtol_rel(local_opt, 1e-7);
}
opt->force_stop_child = local_opt;
ret = mlsl_minimize(ni, f, f_data, lb, ub, x, minf, &stop,
local_opt, (int) POP(0),
algorithm >= NLOPT_GN_MLSL_LDS &&
algorithm != NLOPT_G_MLSL);
opt->force_stop_child = NULL;
if (!opt->local_opt) nlopt_destroy(local_opt);
return ret;
}
case NLOPT_LD_MMA: case NLOPT_LD_CCSAQ: {
nlopt_opt dual_opt;
nlopt_result ret;
#define LO(param, def) (opt->local_opt ? opt->local_opt->param : (def))
dual_opt = nlopt_create(LO(algorithm,
nlopt_local_search_alg_deriv),
nlopt_count_constraints(opt->m,
opt->fc));
if (!dual_opt) return NLOPT_FAILURE;
nlopt_set_ftol_rel(dual_opt, LO(ftol_rel, 1e-14));
nlopt_set_ftol_abs(dual_opt, LO(ftol_abs, 0.0));
nlopt_set_maxeval(dual_opt, LO(maxeval, 100000));
#undef LO
if (algorithm == NLOPT_LD_MMA)
ret = mma_minimize(n, f, f_data, opt->m, opt->fc,
lb, ub, x, minf, &stop, dual_opt);
else
ret = ccsa_quadratic_minimize(
n, f, f_data, opt->m, opt->fc, opt->pre,
lb, ub, x, minf, &stop, dual_opt);
nlopt_destroy(dual_opt);
return ret;
}
case NLOPT_LN_COBYLA: {
nlopt_result ret;
int freedx = 0;
if (!opt->dx) {
freedx = 1;
if (nlopt_set_default_initial_step(opt, x) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
}
return cobyla_minimize(n, f, f_data,
opt->m, opt->fc,
opt->p, opt->h,
lb, ub, x, minf, &stop,
opt->dx);
if (freedx) { free(opt->dx); opt->dx = NULL; }
return ret;
}
case NLOPT_LN_NEWUOA: {
double step;
if (initial_step(opt, x, &step) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
return newuoa(ni, 2*n+1, x, 0, 0, step,
&stop, minf, f_noderiv, opt);
}
case NLOPT_LN_NEWUOA_BOUND: {
double step;
if (initial_step(opt, x, &step) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
return newuoa(ni, 2*n+1, x, lb, ub, step,
&stop, minf, f_noderiv, opt);
}
case NLOPT_LN_BOBYQA: {
nlopt_result ret;
int freedx = 0;
if (!opt->dx) {
freedx = 1;
if (nlopt_set_default_initial_step(opt, x) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
}
ret = bobyqa(ni, 2*n+1, x, lb, ub, opt->dx,
&stop, minf, opt->f, opt->f_data);
if (freedx) { free(opt->dx); opt->dx = NULL; }
return ret;
}
case NLOPT_LN_NELDERMEAD:
case NLOPT_LN_SBPLX:
{
nlopt_result ret;
int freedx = 0;
if (!opt->dx) {
freedx = 1;
if (nlopt_set_default_initial_step(opt, x) != NLOPT_SUCCESS)
return NLOPT_OUT_OF_MEMORY;
}
if (algorithm == NLOPT_LN_NELDERMEAD)
ret= nldrmd_minimize(ni,f,f_data,lb,ub,x,minf,opt->dx,&stop);
else
ret= sbplx_minimize(ni,f,f_data,lb,ub,x,minf,opt->dx,&stop);
if (freedx) { free(opt->dx); opt->dx = NULL; }
return ret;
}
case NLOPT_AUGLAG:
case NLOPT_AUGLAG_EQ:
case NLOPT_LN_AUGLAG:
case NLOPT_LN_AUGLAG_EQ:
case NLOPT_LD_AUGLAG:
case NLOPT_LD_AUGLAG_EQ: {
nlopt_opt local_opt = opt->local_opt;
nlopt_result ret;
if ((algorithm == NLOPT_AUGLAG || algorithm == NLOPT_AUGLAG_EQ)
&& !local_opt)
return NLOPT_INVALID_ARGS;
if (!local_opt) { /* default */
local_opt = nlopt_create(
algorithm == NLOPT_LN_AUGLAG ||
algorithm == NLOPT_LN_AUGLAG_EQ
? nlopt_local_search_alg_nonderiv
: nlopt_local_search_alg_deriv, n);
if (!local_opt) return NLOPT_FAILURE;
nlopt_set_ftol_rel(local_opt, opt->ftol_rel);
nlopt_set_ftol_abs(local_opt, opt->ftol_abs);
nlopt_set_xtol_rel(local_opt, opt->xtol_rel);
nlopt_set_xtol_abs(local_opt, opt->xtol_abs);
nlopt_set_maxeval(local_opt, nlopt_local_search_maxeval);
}
if (opt->dx) nlopt_set_initial_step(local_opt, opt->dx);
opt->force_stop_child = local_opt;
ret = auglag_minimize(ni, f, f_data,
opt->m, opt->fc,
opt->p, opt->h,
lb, ub, x, minf, &stop,
local_opt,
algorithm == NLOPT_AUGLAG_EQ
|| algorithm == NLOPT_LN_AUGLAG_EQ
|| algorithm == NLOPT_LD_AUGLAG_EQ);
opt->force_stop_child = NULL;
if (!opt->local_opt) nlopt_destroy(local_opt);
return ret;
}
case NLOPT_GN_ISRES:
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
return isres_minimize(ni, f, f_data,
(int) (opt->m), opt->fc,
(int) (opt->p), opt->h,
lb, ub, x, minf, &stop,
(int) POP(0));
case NLOPT_GN_ESCH:
if (!finite_domain(n, lb, ub)) return NLOPT_INVALID_ARGS;
return chevolutionarystrategy(n, f, f_data,
lb, ub, x, minf, &stop,
(unsigned) POP(0),
(unsigned) (POP(0)*1.5));
case NLOPT_LD_SLSQP:
return nlopt_slsqp(n, f, f_data,
opt->m, opt->fc,
opt->p, opt->h,
lb, ub, x, minf, &stop);
default:
return NLOPT_INVALID_ARGS;
}
return NLOPT_SUCCESS; /* never reached */
}
/*********************************************************************/
typedef struct {
nlopt_func f;
nlopt_precond pre;
void *f_data;
} f_max_data;
/* wrapper for maximizing: just flip the sign of f and grad */
static double f_max(unsigned n, const double *x, double *grad, void *data)
{
f_max_data *d = (f_max_data *) data;
double val = d->f(n, x, grad, d->f_data);
if (grad) {
unsigned i;
for (i = 0; i < n; ++i)
grad[i] = -grad[i];
}
return -val;
}
static void pre_max(unsigned n, const double *x, const double *v,
double *vpre, void *data)
{
f_max_data *d = (f_max_data *) data;
unsigned i;
d->pre(n, x, v, vpre, d->f_data);
for (i = 0; i < n; ++i) vpre[i] = -vpre[i];
}
nlopt_result
NLOPT_STDCALL nlopt_optimize(nlopt_opt opt, double *x, double *opt_f)
{
nlopt_func f; void *f_data; nlopt_precond pre;
f_max_data fmd;
int maximize;
nlopt_result ret;
if (!opt || !opt_f || !opt->f) return NLOPT_INVALID_ARGS;
f = opt->f; f_data = opt->f_data; pre = opt->pre;
/* for maximizing, just minimize the f_max wrapper, which
flips the sign of everything */
if ((maximize = opt->maximize)) {
fmd.f = f; fmd.f_data = f_data; fmd.pre = pre;
opt->f = f_max; opt->f_data = &fmd;
if (opt->pre) opt->pre = pre_max;
opt->stopval = -opt->stopval;
opt->maximize = 0;
}
{ /* possibly eliminate lb == ub dimensions for some algorithms */
nlopt_opt elim_opt = opt;
if (elimdim_wrapcheck(opt)) {
elim_opt = elimdim_create(opt);
if (!elim_opt) { ret = NLOPT_OUT_OF_MEMORY; goto done; }
elimdim_shrink(opt->n, x, opt->lb, opt->ub);
}
ret = nlopt_optimize_(elim_opt, x, opt_f);
if (elim_opt != opt) {
elimdim_destroy(elim_opt);
elimdim_expand(opt->n, x, opt->lb, opt->ub);
}
}
done:
if (maximize) { /* restore original signs */
opt->maximize = maximize;
opt->stopval = -opt->stopval;
opt->f = f; opt->f_data = f_data; opt->pre = pre;
*opt_f = -*opt_f;
}
return ret;
}
/*********************************************************************/
nlopt_result nlopt_optimize_limited(nlopt_opt opt, double *x, double *minf,
int maxeval, double maxtime)
{
int save_maxeval;
double save_maxtime;
nlopt_result ret;
if (!opt) return NLOPT_INVALID_ARGS;
save_maxeval = nlopt_get_maxeval(opt);
save_maxtime = nlopt_get_maxtime(opt);
/* override opt limits if maxeval and/or maxtime are more stringent */
if (save_maxeval <= 0 || (maxeval > 0 && maxeval < save_maxeval))
nlopt_set_maxeval(opt, maxeval);
if (save_maxtime <= 0 || (maxtime > 0 && maxtime < save_maxtime))
nlopt_set_maxtime(opt, maxtime);
ret = nlopt_optimize(opt, x, minf);
nlopt_set_maxeval(opt, save_maxeval);
nlopt_set_maxtime(opt, save_maxtime);
return ret;
}
/*********************************************************************/
|