1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
/* Copyright (c) 2007-2014 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "nlopt-util.h"
#include "nlopt.h"
#include "cdirect.h"
#include "redblack.h"
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/***************************************************************************/
/* basic data structure:
*
* a hyper-rectangle is stored as an array of length L = 2n+3, where [1]
* is the value (f) of the function at the center, [0] is the "size"
* measure (d) of the rectangle, [3..n+2] are the coordinates of the
* center (c), [n+3..2n+2] are the widths of the sides (w), and [2]
* is an "age" measure for tie-breaking purposes.
*
* we store the hyper-rectangles in a red-black tree, sorted by (d,f)
* in lexographic order, to allow us to perform quick convex-hull
* calculations (in the future, we might make this data structure
* more sophisticated based on the dynamic convex-hull literature).
*
* n > 0 always, of course.
*/
/* parameters of the search algorithm and various information that
needs to be passed around */
typedef struct {
int n; /* dimension */
int L; /* size of each rectangle (2n+3) */
double magic_eps; /* Jones' epsilon parameter (1e-4 is recommended) */
int which_diam; /* which measure of hyper-rectangle diam to use:
0 = Jones, 1 = Gablonsky */
int which_div; /* which way to divide rects:
0: orig. Jones (divide all longest sides)
1: Gablonsky (cubes divide all, rects longest)
2: Jones Encyc. Opt.: pick random longest side */
int which_opt; /* which rects are considered "potentially optimal"
0: Jones (all pts on cvx hull, even equal pts)
1: Gablonsky DIRECT-L (pick one pt, if equal pts)
2: ~ 1, but pick points randomly if equal pts
... 2 seems to suck compared to just picking oldest pt */
const double *lb, *ub;
nlopt_stopping *stop; /* stopping criteria */
nlopt_func f; void *f_data;
double *work; /* workspace, of length >= 2*n */
int *iwork; /* workspace, length >= n */
double minf, *xmin; /* minimum so far */
/* red-black tree of hyperrects, sorted by (d,f,age) in
lexographical order */
rb_tree rtree;
int age; /* age for next new rect */
double **hull; /* array to store convex hull */
int hull_len; /* allocated length of hull array */
} params;
/***************************************************************************/
/* Evaluate the "diameter" (d) of a rectangle of widths w[n]
We round the result to single precision, which should be plenty for
the use we put the diameter to (rect sorting), to allow our
performance hack in convex_hull to work (in the Jones and Gablonsky
DIRECT algorithms, all of the rects fall into a few diameter
values, and we don't want rounding error to spoil this) */
static double rect_diameter(int n, const double *w, const params *p)
{
int i;
if (p->which_diam == 0) { /* Jones measure */
double sum = 0;
for (i = 0; i < n; ++i)
sum += w[i] * w[i];
/* distance from center to a vertex */
return ((float) (sqrt(sum) * 0.5));
}
else { /* Gablonsky measure */
double maxw = 0;
for (i = 0; i < n; ++i)
if (w[i] > maxw)
maxw = w[i];
/* half-width of longest side */
return ((float) (maxw * 0.5));
}
}
#define ALLOC_RECT(rect, L) if (!(rect = (double*) malloc(sizeof(double)*(L)))) return NLOPT_OUT_OF_MEMORY
static int sort_fv_compare(void *fv_, const void *a_, const void *b_)
{
const double *fv = (const double *) fv_;
int a = *((const int *) a_), b = *((const int *) b_);
double fa = MIN(fv[2*a], fv[2*a+1]);
double fb = MIN(fv[2*b], fv[2*b+1]);
if (fa < fb)
return -1;
else if (fa > fb)
return +1;
else
return 0;
}
static void sort_fv(int n, double *fv, int *isort)
{
int i;
for (i = 0; i < n; ++i) isort[i] = i;
nlopt_qsort_r(isort, (unsigned) n, sizeof(int), fv, sort_fv_compare);
}
static double function_eval(const double *x, params *p) {
double f = p->f(p->n, x, NULL, p->f_data);
if (f < p->minf) {
p->minf = f;
memcpy(p->xmin, x, sizeof(double) * p->n);
}
p->stop->nevals++;
return f;
}
#define FUNCTION_EVAL(fv,x,p,freeonerr) fv = function_eval(x, p); if (nlopt_stop_forced((p)->stop)) { free(freeonerr); return NLOPT_FORCED_STOP; } else if (p->minf < p->stop->minf_max) { free(freeonerr); return NLOPT_MINF_MAX_REACHED; } else if (nlopt_stop_evals((p)->stop)) { free(freeonerr); return NLOPT_MAXEVAL_REACHED; } else if (nlopt_stop_time((p)->stop)) { free(freeonerr); return NLOPT_MAXTIME_REACHED; }
#define THIRD (0.3333333333333333333333)
#define EQUAL_SIDE_TOL 5e-2 /* tolerance to equate side sizes */
/* divide rectangle idiv in the list p->rects */
static nlopt_result divide_rect(double *rdiv, params *p)
{
int i;
const int n = p->n;
const int L = p->L;
double *c = rdiv + 3; /* center of rect to divide */
double *w = c + n; /* widths of rect to divide */
double wmax = w[0];
int imax = 0, nlongest = 0;
rb_node *node;
for (i = 1; i < n; ++i)
if (w[i] > wmax)
wmax = w[imax = i];
for (i = 0; i < n; ++i)
if (wmax - w[i] <= wmax * EQUAL_SIDE_TOL)
++nlongest;
if (p->which_div == 1 || (p->which_div == 0 && nlongest == n)) {
/* trisect all longest sides, in increasing order of the average
function value along that direction */
double *fv = p->work;
int *isort = p->iwork;
for (i = 0; i < n; ++i) {
if (wmax - w[i] <= wmax * EQUAL_SIDE_TOL) {
double csave = c[i];
c[i] = csave - w[i] * THIRD;
FUNCTION_EVAL(fv[2*i], c, p, 0);
c[i] = csave + w[i] * THIRD;
FUNCTION_EVAL(fv[2*i+1], c, p, 0);
c[i] = csave;
}
else {
fv[2*i] = fv[2*i+1] = HUGE_VAL;
}
}
sort_fv(n, fv, isort);
if (!(node = rb_tree_find(&p->rtree, rdiv)))
return NLOPT_FAILURE;
for (i = 0; i < nlongest; ++i) {
int k;
w[isort[i]] *= THIRD;
rdiv[0] = rect_diameter(n, w, p);
rdiv[2] = p->age++;
node = rb_tree_resort(&p->rtree, node);
for (k = 0; k <= 1; ++k) {
double *rnew;
ALLOC_RECT(rnew, L);
memcpy(rnew, rdiv, sizeof(double) * L);
rnew[3 + isort[i]] += w[isort[i]] * (2*k-1);
rnew[1] = fv[2*isort[i]+k];
rnew[2] = p->age++;
if (!rb_tree_insert(&p->rtree, rnew)) {
free(rnew);
return NLOPT_OUT_OF_MEMORY;
}
}
}
}
else {
int k;
if (nlongest > 1 && p->which_div == 2) {
/* randomly choose longest side */
i = nlopt_iurand(nlongest);
for (k = 0; k < n; ++k)
if (wmax - w[k] <= wmax * EQUAL_SIDE_TOL) {
if (!i) { i = k; break; }
--i;
}
}
else
i = imax; /* trisect longest side */
if (!(node = rb_tree_find(&p->rtree, rdiv)))
return NLOPT_FAILURE;
w[i] *= THIRD;
rdiv[0] = rect_diameter(n, w, p);
rdiv[2] = p->age++;
node = rb_tree_resort(&p->rtree, node);
for (k = 0; k <= 1; ++k) {
double *rnew;
ALLOC_RECT(rnew, L);
memcpy(rnew, rdiv, sizeof(double) * L);
rnew[3 + i] += w[i] * (2*k-1);
FUNCTION_EVAL(rnew[1], rnew + 3, p, rnew);
rnew[2] = p->age++;
if (!rb_tree_insert(&p->rtree, rnew)) {
free(rnew);
return NLOPT_OUT_OF_MEMORY;
}
}
}
return NLOPT_SUCCESS;
}
/***************************************************************************/
/* Convex hull algorithm, used later to find the potentially optimal
points. What we really have in DIRECT is a "dynamic convex hull"
problem, since we are dynamically adding/removing points and
updating the hull, but I haven't implemented any of the fancy
algorithms for this problem yet. */
/* Find the lower convex hull of a set of points (x,y) stored in a rb-tree
of pointers to {x,y} arrays sorted in lexographic order by (x,y).
Unlike standard convex hulls, we allow redundant points on the hull,
and even allow duplicate points if allow_dups is nonzero.
The return value is the number of points in the hull, with pointers
stored in hull[i] (should be an array of length >= t->N).
*/
static int convex_hull(rb_tree *t, double **hull, int allow_dups)
{
int nhull = 0;
double minslope;
double xmin, xmax, yminmin, ymaxmin;
rb_node *n, *nmax;
/* Monotone chain algorithm [Andrew, 1979]. */
n = rb_tree_min(t);
if (!n) return 0;
nmax = rb_tree_max(t);
xmin = n->k[0];
yminmin = n->k[1];
xmax = nmax->k[0];
if (allow_dups)
do { /* include any duplicate points at (xmin,yminmin) */
hull[nhull++] = n->k;
n = rb_tree_succ(n);
} while (n && n->k[0] == xmin && n->k[1] == yminmin);
else
hull[nhull++] = n->k;
if (xmin == xmax) return nhull;
/* set nmax = min mode with x == xmax */
#if 0
while (nmax->k[0] == xmax)
nmax = rb_tree_pred(nmax); /* non-NULL since xmin != xmax */
nmax = rb_tree_succ(nmax);
#else
/* performance hack (see also below) */
{
double kshift[2];
kshift[0] = xmax * (1 - 1e-13);
kshift[1] = -HUGE_VAL;
nmax = rb_tree_find_gt(t, kshift); /* non-NULL since xmin != xmax */
}
#endif
ymaxmin = nmax->k[1];
minslope = (ymaxmin - yminmin) / (xmax - xmin);
/* set n = first node with x != xmin */
#if 0
while (n->k[0] == xmin)
n = rb_tree_succ(n); /* non-NULL since xmin != xmax */
#else
/* performance hack (see also below) */
{
double kshift[2];
kshift[0] = xmin * (1 + 1e-13);
kshift[1] = -HUGE_VAL;
n = rb_tree_find_gt(t, kshift); /* non-NULL since xmin != xmax */
}
#endif
for (; n != nmax; n = rb_tree_succ(n)) {
double *k = n->k;
if (k[1] > yminmin + (k[0] - xmin) * minslope)
continue;
/* performance hack: most of the points in DIRECT lie along
vertical lines at a few x values, and we can exploit this */
if (nhull && k[0] == hull[nhull - 1][0]) { /* x == previous x */
if (k[1] > hull[nhull - 1][1]) {
double kshift[2];
/* because of the round to float in rect_diameter, above,
it shouldn't be possible for two diameters (x values)
to have a fractional difference < 1e-13. Note
that k[0] > 0 always in DIRECT */
kshift[0] = k[0] * (1 + 1e-13);
kshift[1] = -HUGE_VAL;
n = rb_tree_pred(rb_tree_find_gt(t, kshift));
continue;
}
else { /* equal y values, add to hull */
if (allow_dups)
hull[nhull++] = k;
continue;
}
}
/* remove points until we are making a "left turn" to k */
while (nhull > 1) {
double *t1 = hull[nhull - 1], *t2;
/* because we allow equal points in our hull, we have
to modify the standard convex-hull algorithm slightly:
we need to look backwards in the hull list until we
find a point t2 != t1 */
int it2 = nhull - 2;
do {
t2 = hull[it2--];
} while (it2 >= 0 && t2[0] == t1[0] && t2[1] == t1[1]);
if (it2 < 0) break;
/* cross product (t1-t2) x (k-t2) > 0 for a left turn: */
if ((t1[0]-t2[0]) * (k[1]-t2[1])
- (t1[1]-t2[1]) * (k[0]-t2[0]) >= 0)
break;
--nhull;
}
hull[nhull++] = k;
}
if (allow_dups)
do { /* include any duplicate points at (xmax,ymaxmin) */
hull[nhull++] = nmax->k;
nmax = rb_tree_succ(nmax);
} while (nmax && nmax->k[0] == xmax && nmax->k[1] == ymaxmin);
else
hull[nhull++] = nmax->k;
return nhull;
}
/***************************************************************************/
static int small(double *w, params *p)
{
int i;
for (i = 0; i < p->n; ++i)
if (w[i] > p->stop->xtol_abs[i] &&
w[i] > (p->ub[i] - p->lb[i]) * p->stop->xtol_rel)
return 0;
return 1;
}
static nlopt_result divide_good_rects(params *p)
{
const int n = p->n;
double **hull;
int nhull, i, xtol_reached = 1, divided_some = 0;
double magic_eps = p->magic_eps;
if (p->hull_len < p->rtree.N) {
p->hull_len += p->rtree.N;
p->hull = (double **) realloc(p->hull, sizeof(double*)*p->hull_len);
if (!p->hull) return NLOPT_OUT_OF_MEMORY;
}
nhull = convex_hull(&p->rtree, hull = p->hull, p->which_opt != 1);
divisions:
for (i = 0; i < nhull; ++i) {
double K1 = -HUGE_VAL, K2 = -HUGE_VAL, K;
int im, ip;
/* find unequal points before (im) and after (ip) to get slope */
for (im = i-1; im >= 0 && hull[im][0] == hull[i][0]; --im) ;
for (ip = i+1; ip < nhull && hull[ip][0] == hull[i][0]; ++ip) ;
if (im >= 0)
K1 = (hull[i][1] - hull[im][1]) / (hull[i][0] - hull[im][0]);
if (ip < nhull)
K2 = (hull[i][1] - hull[ip][1]) / (hull[i][0] - hull[ip][0]);
K = MAX(K1, K2);
if (hull[i][1] - K * hull[i][0]
<= p->minf - magic_eps * fabs(p->minf) || ip == nhull) {
/* "potentially optimal" rectangle, so subdivide */
nlopt_result ret = divide_rect(hull[i], p);
divided_some = 1;
if (ret != NLOPT_SUCCESS) return ret;
xtol_reached = xtol_reached && small(hull[i] + 3+n, p);
}
/* for the DIRECT-L variant, we only divide one rectangle out
of all points with equal diameter and function values
... note that for p->which_opt == 1, i == ip-1 should be a no-op
anyway, since we set allow_dups=0 in convex_hull above */
if (p->which_opt == 1)
i = ip - 1; /* skip to next unequal point for next iteration */
else if (p->which_opt == 2) /* like DIRECT-L but randomized */
i += nlopt_iurand(ip - i); /* possibly do another equal pt */
}
if (!divided_some) {
if (magic_eps != 0) {
magic_eps = 0;
goto divisions; /* try again */
}
else { /* WTF? divide largest rectangle with smallest f */
/* (note that this code actually gets called from time
to time, and the heuristic here seems to work well,
but I don't recall this situation being discussed in
the references?) */
rb_node *max = rb_tree_max(&p->rtree);
rb_node *pred = max;
double wmax = max->k[0];
do { /* note: this loop is O(N) worst-case time */
max = pred;
pred = rb_tree_pred(max);
} while (pred && pred->k[0] == wmax);
return divide_rect(max->k, p);
}
}
return xtol_reached ? NLOPT_XTOL_REACHED : NLOPT_SUCCESS;
}
/***************************************************************************/
/* lexographic sort order (d,f,age) of hyper-rects, for red-black tree */
int cdirect_hyperrect_compare(double *a, double *b)
{
if (a[0] < b[0]) return -1;
if (a[0] > b[0]) return +1;
if (a[1] < b[1]) return -1;
if (a[1] > b[1]) return +1;
if (a[2] < b[2]) return -1;
if (a[2] > b[2]) return +1;
return (int) (a - b); /* tie-breaker, shouldn't be needed */
}
/***************************************************************************/
nlopt_result cdirect_unscaled(int n, nlopt_func f, void *f_data,
const double *lb, const double *ub,
double *x,
double *minf,
nlopt_stopping *stop,
double magic_eps, int which_alg)
{
params p;
int i;
double *rnew;
nlopt_result ret = NLOPT_OUT_OF_MEMORY;
p.magic_eps = magic_eps;
p.which_diam = which_alg % 3;
p.which_div = (which_alg / 3) % 3;
p.which_opt = (which_alg / (3*3)) % 3;
p.lb = lb; p.ub = ub;
p.stop = stop;
p.n = n;
p.L = 2*n+3;
p.f = f;
p.f_data = f_data;
p.xmin = x;
p.minf = HUGE_VAL;
p.work = 0;
p.iwork = 0;
p.hull = 0;
p.age = 0;
rb_tree_init(&p.rtree, cdirect_hyperrect_compare);
p.work = (double *) malloc(sizeof(double) * (2*n));
if (!p.work) goto done;
p.iwork = (int *) malloc(sizeof(int) * n);
if (!p.iwork) goto done;
p.hull_len = 128; /* start with a reasonable number */
p.hull = (double **) malloc(sizeof(double *) * p.hull_len);
if (!p.hull) goto done;
if (!(rnew = (double *) malloc(sizeof(double) * p.L))) goto done;
for (i = 0; i < n; ++i) {
rnew[3+i] = 0.5 * (lb[i] + ub[i]);
rnew[3+n+i] = ub[i] - lb[i];
}
rnew[0] = rect_diameter(n, rnew+3+n, &p);
rnew[1] = function_eval(rnew+3, &p);
rnew[2] = p.age++;
if (!rb_tree_insert(&p.rtree, rnew)) {
free(rnew);
goto done;
}
ret = divide_rect(rnew, &p);
if (ret != NLOPT_SUCCESS) goto done;
while (1) {
double minf0 = p.minf;
ret = divide_good_rects(&p);
if (ret != NLOPT_SUCCESS) goto done;
if (p.minf < minf0 && nlopt_stop_f(p.stop, p.minf, minf0)) {
ret = NLOPT_FTOL_REACHED;
goto done;
}
}
done:
rb_tree_destroy_with_keys(&p.rtree);
free(p.hull);
free(p.iwork);
free(p.work);
*minf = p.minf;
return ret;
}
/* in the conventional DIRECT-type algorithm, we first rescale our
coordinates to a unit hypercube ... we do this simply by
wrapping cdirect() around cdirect_unscaled(). */
double cdirect_uf(unsigned n, const double *xu, double *grad, void *d_)
{
cdirect_uf_data *d = (cdirect_uf_data *) d_;
double f;
unsigned i;
for (i = 0; i < n; ++i)
d->x[i] = d->lb[i] + xu[i] * (d->ub[i] - d->lb[i]);
f = d->f(n, d->x, grad, d->f_data);
if (grad)
for (i = 0; i < n; ++i)
grad[i] *= d->ub[i] - d->lb[i];
return f;
}
nlopt_result cdirect(int n, nlopt_func f, void *f_data,
const double *lb, const double *ub,
double *x,
double *minf,
nlopt_stopping *stop,
double magic_eps, int which_alg)
{
cdirect_uf_data d;
nlopt_result ret;
const double *xtol_abs_save;
int i;
d.f = f; d.f_data = f_data; d.lb = lb; d.ub = ub;
d.x = (double *) malloc(sizeof(double) * n*4);
if (!d.x) return NLOPT_OUT_OF_MEMORY;
for (i = 0; i < n; ++i) {
x[i] = (x[i] - lb[i]) / (ub[i] - lb[i]);
d.x[n+i] = 0;
d.x[2*n+i] = 1;
d.x[3*n+i] = stop->xtol_abs[i] / (ub[i] - lb[i]);
}
xtol_abs_save = stop->xtol_abs;
stop->xtol_abs = d.x + 3*n;
ret = cdirect_unscaled(n, cdirect_uf, &d, d.x+n, d.x+2*n, x, minf, stop,
magic_eps, which_alg);
stop->xtol_abs = xtol_abs_save;
for (i = 0; i < n; ++i)
x[i] = lb[i]+ x[i] * (ub[i] - lb[i]);
free(d.x);
return ret;
}
|