1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
/* DIRect-transp.f -- translated by f2c (version 20050501).
f2c output hand-cleaned by SGJ (August 2007).
*/
#include <math.h>
#include "direct-internal.h"
/* Common Block Declarations */
/* Table of constant values */
/* +-----------------------------------------------------------------------+ */
/* | Program : Direct.f | */
/* | Last modified : 07-16-2001 | */
/* | Written by : Joerg Gablonsky (jmgablon@unity.ncsu.edu) | */
/* | North Carolina State University | */
/* | Dept. of Mathematics | */
/* | DIRECT is a method to solve problems of the form: | */
/* | min f: Q --> R, | */
/* | where f is the function to be minimized and Q is an n-dimensional | */
/* | hyperrectangle given by the the following equation: | */
/* | | */
/* | Q={ x : l(i) <= x(i) <= u(i), i = 1,...,n }. | */
/* | Note: This version of DIRECT can also handle hidden constraints. By | */
/* | this we mean that the function may not be defined over the whole| */
/* | hyperrectangle Q, but only over a subset, which is not given | */
/* | analytically. | */
/* | | */
/* | We now give a brief outline of the algorithm: | */
/* | | */
/* | The algorithm starts with mapping the hyperrectangle Q to the | */
/* | n-dimensional unit hypercube. DIRECT then samples the function at | */
/* | the center of this hypercube and at 2n more points, 2 in each | */
/* | coordinate direction. Uisng these function values, DIRECT then | */
/* | divides the domain into hyperrectangles, each having exactly one of | */
/* | the sampling points as its center. In each iteration, DIRECT chooses| */
/* | some of the existing hyperrectangles to be further divided. | */
/* | We provide two different strategies of how to decide which | */
/* | hyperrectangles DIRECT divides and several different convergence | */
/* | criteria. | */
/* | | */
/* | DIRECT was designed to solve problems where the function f is | */
/* | Lipschitz continues. However, DIRECT has proven to be effective on | */
/* | more complex problems than these. | */
/* +-----------------------------------------------------------------------+ */
/* Subroutine */ void direct_direct_(fp fcn, doublereal *x, integer *n, doublereal *eps, doublereal epsabs, integer *maxf, integer *maxt, double starttime, double maxtime, int *force_stop, doublereal *minf, doublereal *l,
doublereal *u, integer *algmethod, integer *ierror, FILE *logfile,
doublereal *fglobal, doublereal *fglper, doublereal *volper,
doublereal *sigmaper, void *fcn_data)
{
/* System generated locals */
integer i__1, i__2;
doublereal d__1;
/* changed by SGJ to be dynamically allocated ... would be
even better to use realloc, below, to grow these as needed */
integer MAXFUNC = *maxf <= 0 ? 101000 : (*maxf + 1000 + *maxf / 2);
integer MAXDEEP = *maxt <= 0 ? MAXFUNC/5: *maxt + 1000;
const integer MAXDIV = 5000;
/* Local variables */
integer increase;
doublereal *c__ = 0 /* was [90000][64] */, *f = 0 /*
was [90000][2] */;
integer i__, j, *s = 0 /* was [3000][2] */, t;
doublereal *w = 0;
doublereal divfactor;
integer ifeasiblef, iepschange, actmaxdeep;
integer actdeep_div__, iinfesiblef;
integer pos1, newtosample;
integer ifree, help;
doublereal *oldl = 0, fmax;
integer maxi;
doublereal kmax, *oldu = 0;
integer oops, *list2 = 0 /* was [64][2] */, cheat;
doublereal delta;
integer mdeep, *point = 0, start;
integer *anchor = 0, *length = 0 /* was [90000][64] */, *arrayi = 0;
doublereal *levels = 0, *thirds = 0;
integer writed;
doublereal epsfix;
integer oldpos, minpos, maxpos, tstart, actdeep, ifreeold, oldmaxf;
integer numfunc, version;
integer jones;
/* FIXME: change sizes dynamically? */
#define MY_ALLOC(p, t, n) p = (t *) malloc(sizeof(t) * (n)); \
if (!(p)) { *ierror = -100; goto cleanup; }
/* Note that I've transposed c__, length, and f relative to the
original Fortran code. e.g. length was length(maxfunc,n)
in Fortran [ or actually length(maxfunc, maxdims), but by
using malloc I can just allocate n ], corresponding to
length[n][maxfunc] in C, but I've changed the code to access
it as length[maxfunc][n]. That is, the maxfunc direction
is the discontiguous one. This makes it easier to resize
dynamically (by adding contiguous rows) using realloc, without
having to move data around manually. */
MY_ALLOC(c__, doublereal, MAXFUNC * (*n));
MY_ALLOC(length, integer, MAXFUNC * (*n));
MY_ALLOC(f, doublereal, MAXFUNC * 2);
MY_ALLOC(point, integer, MAXFUNC);
if (*maxf <= 0) *maxf = MAXFUNC - 1000;
MY_ALLOC(s, integer, MAXDIV * 2);
MY_ALLOC(anchor, integer, MAXDEEP + 2);
MY_ALLOC(levels, doublereal, MAXDEEP + 1);
MY_ALLOC(thirds, doublereal, MAXDEEP + 1);
if (*maxt <= 0) *maxt = MAXDEEP;
MY_ALLOC(w, doublereal, (*n));
MY_ALLOC(oldl, doublereal, (*n));
MY_ALLOC(oldu, doublereal, (*n));
MY_ALLOC(list2, integer, (*n) * 2);
MY_ALLOC(arrayi, integer, (*n));
/* +-----------------------------------------------------------------------+ */
/* | SUBROUTINE Direct | */
/* | On entry | */
/* | fcn -- The argument containing the name of the user-supplied | */
/* | SUBROUTINE that returns values for the function to be | */
/* | minimized. | */
/* | n -- The dimension of the problem. | */
/* | eps -- Exceeding value. If eps > 0, we use the same epsilon for | */
/* | all iterations. If eps < 0, we use the update formula from | */
/* | Jones: | */
/* | eps = max(1.D-4*abs(minf),epsfix), | */
/* | where epsfix = abs(eps), the absolute value of eps which is| */
/* | passed to the function. | */
/* | maxf -- The maximum number of function evaluations. | */
/* | maxT -- The maximum number of iterations. | */
/* | Direct stops when either the maximum number of iterations | */
/* | is reached or more than maxf function-evalutions were made.| */
/* | l -- The lower bounds of the hyperbox. | */
/* | u -- The upper bounds of the hyperbox. | */
/* |algmethod-- Choose the method, that is either use the original method | */
/* | as described by Jones et.al. (0) or use our modification(1)| */
/* | logfile -- File-Handle for the logfile. DIRECT expects this file to be| */
/* | opened and closed by the user outside of DIRECT. We moved | */
/* | this to the outside so the user can add extra informations | */
/* | to this file before and after the call to DIRECT. | */
/* | fglobal -- Function value of the global optimum. If this value is not | */
/* | known (that is, we solve a real problem, not a testproblem)| */
/* | set this value to -1.D100 and fglper (see below) to 0.D0. | */
/* | fglper -- Terminate the optimization when the percent error | */
/* | 100(f_min - fglobal)/max(1,abs(fglobal)) < fglper. | */
/* | volper -- Terminate the optimization when the volume of the | */
/* | hyperrectangle S with f(c(S)) = minf is less then volper | */
/* | percent of the volume of the original hyperrectangle. | */
/* |sigmaper -- Terminate the optimization when the measure of the | */
/* | hyperrectangle S with f(c(S)) = minf is less then sigmaper.| */
/* | | */
/* | User data that is passed through without being changed: | */
/* | fcn_data - opaque pointer to any user data | */
/* | | */
/* | On return | */
/* | | */
/* | x -- The final point obtained in the optimization process. | */
/* | X should be a good approximation to the global minimum | */
/* | for the function within the hyper-box. | */
/* | | */
/* | minf -- The value of the function at x. | */
/* | Ierror -- Error flag. If Ierror is lower 0, an error has occurred. | */
/* | The values of Ierror mean | */
/* | Fatal errors : | */
/* | -1 u(i) <= l(i) for some i. | */
/* | -2 maxf is too large. | */
/* | -3 Initialization in DIRpreprc failed. | */
/* | -4 Error in DIRSamplepoints, that is there was an error | */
/* | in the creation of the sample points. | */
/* | -5 Error in DIRSamplef, that is an error occurred while | */
/* | the function was sampled. | */
/* | -6 Error in DIRDoubleInsert, that is an error occurred | */
/* | DIRECT tried to add all hyperrectangles with the same| */
/* | size and function value at the center. Either | */
/* | increase maxdiv or use our modification (Jones = 1). | */
/* | Termination values : | */
/* | 1 Number of function evaluations done is larger then | */
/* | maxf. | */
/* | 2 Number of iterations is equal to maxT. | */
/* | 3 The best function value found is within fglper of | */
/* | the (known) global optimum, that is | */
/* | 100(minf - fglobal/max(1,|fglobal|)) < fglper. | */
/* | Note that this termination signal only occurs when | */
/* | the global optimal value is known, that is, a test | */
/* | function is optimized. | */
/* | 4 The volume of the hyperrectangle with minf at its | */
/* | center is less than volper percent of the volume of | */
/* | the original hyperrectangle. | */
/* | 5 The measure of the hyperrectangle with minf at its | */
/* | center is less than sigmaper. | */
/* | | */
/* | SUBROUTINEs used : | */
/* | | */
/* | DIRheader, DIRInitSpecific, DIRInitList, DIRpreprc, DIRInit, DIRChoose| */
/* | DIRDoubleInsert, DIRGet_I, DIRSamplepoints, DIRSamplef, DIRDivide | */
/* | DIRInsertList, DIRreplaceInf, DIRWritehistbox, DIRsummary, Findareas | */
/* | | */
/* | Functions used : | */
/* | | */
/* | DIRgetMaxdeep, DIRgetlevel | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Parameters | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | The maximum of function evaluations allowed. | */
/* | The maximum dept of the algorithm. | */
/* | The maximum number of divisions allowed. | */
/* | The maximal dimension of the problem. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Global Variables. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | EXTERNAL Variables. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | User Variables. | */
/* | These can be used to pass user defined data to the function to be | */
/* | optimized. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Place to define, if needed, some application-specific variables. | */
/* | Note: You should try to use the arrays defined above for this. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | End of application - specific variables ! | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Internal variables : | */
/* | f -- values of functions. | */
/* |divfactor-- Factor used for termination with known global minimum. | */
/* | anchor -- anchors of lists with deepness i, -1 is anchor for list of | */
/* | NaN - values. | */
/* | S -- List of potentially optimal points. | */
/* | point -- lists | */
/* | ifree -- first free position | */
/* | c -- midpoints of arrays | */
/* | thirds -- Precalculated values of 1/3^i. | */
/* | levels -- Length of intervals. | */
/* | length -- Length of intervall (index) | */
/* | t -- actual iteration | */
/* | j -- loop-variable | */
/* | actdeep -- the actual minimal interval-length index | */
/* | Minpos -- position of the actual minimum | */
/* | file -- The filehandle for a datafile. | */
/* | maxpos -- The number of intervalls, which are truncated. | */
/* | help -- A help variable. | */
/* | numfunc -- The actual number of function evaluations. | */
/* | file2 -- The filehandle for an other datafile. | */
/* | ArrayI -- Array with the indexes of the sides with maximum length. | */
/* | maxi -- Number of directions with maximal side length. | */
/* | oops -- Flag which shows if anything went wrong in the | */
/* | initialisation. | */
/* | cheat -- Obsolete. If equal 1, we don't allow Ktilde > kmax. | */
/* | writed -- If writed=1, store final division to plot with Matlab. | */
/* | List2 -- List of indicies of intervalls, which are to be truncated. | */
/* | i -- Another loop-variable. | */
/* |actmaxdeep-- The actual maximum (minimum) of possible Interval length. | */
/* | oldpos -- The old index of the minimum. Used to print only, if there | */
/* | is a new minimum found. | */
/* | tstart -- The start of the outer loop. | */
/* | start -- The postion of the starting point in the inner loop. | */
/* | Newtosample -- The total number of points to sample in the inner loop.| */
/* | w -- Array used to divide the intervalls | */
/* | kmax -- Obsolete. If cheat = 1, Ktilde was not allowed to be larger| */
/* | than kmax. If Ktilde > kmax, we set ktilde = kmax. | */
/* | delta -- The distance to new points from center of old hyperrec. | */
/* | pos1 -- Help variable used as an index. | */
/* | version -- Store the version number of DIRECT. | */
/* | oldmaxf -- Store the original function budget. | */
/* |increase -- Flag used to keep track if function budget was increased | */
/* | because no feasible point was found. | */
/* | ifreeold -- Keep track which index was free before. Used with | */
/* | SUBROUTINE DIRReplaceInf. | */
/* |actdeep_div-- Keep track of the current depths for divisions. | */
/* | oldl -- Array used to store the original bounds of the domain. | */
/* | oldu -- Array used to store the original bounds of the domain. | */
/* | epsfix -- If eps < 0, we use Jones update formula. epsfix stores the | */
/* | absolute value of epsilon. | */
/* |iepschange-- flag iepschange to store if epsilon stays fixed or is | */
/* | changed. | */
/* |DIRgetMaxdeep-- Function to calculate the level of a hyperrectangle. | */
/* |DIRgetlevel-- Function to calculate the level and stage of a hyperrec. | */
/* | fmax -- Keep track of the maximum value of the function found. | */
/* |Ifeasiblef-- Keep track if a feasible point has been found so far. | */
/* | Ifeasiblef = 0 means a feasible point has been found, | */
/* | Ifeasiblef = 1 no feasible point has been found. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | JG 09/25/00 Version counter. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | JG 09/24/00 Add another actdeep to keep track of the current depths | */
/* | for divisions. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* |JG 01/13/01 Added epsfix for epsilon update. If eps < 0, we use Jones | */
/* | update formula. epsfix stores the absolute value of epsilon| */
/* | then. Also added flag iepschange to store if epsilon stays | */
/* | fixed or is changed. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | JG 01/22/01 fmax is used to keep track of the maximum value found. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | JG 01/22/01 Ifeasiblef is used to keep track if a feasible point has | */
/* | been found so far. Ifeasiblef = 0 means a feasible point | */
/* | has been found, Ifeasiblef = 1 if not. | */
/* | JG 03/09/01 IInfeasible is used to keep track if an infeasible point | */
/* | has been found. IInfeasible > 0 means a infeasible point | */
/* | has been found, IInfeasible = 0 if not. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Start of code. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* Parameter adjustments */
--u;
--l;
--x;
/* Function Body */
writed = 0;
jones = *algmethod;
/* +-----------------------------------------------------------------------+ */
/* | Save the upper and lower bounds. | */
/* +-----------------------------------------------------------------------+ */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
oldu[i__ - 1] = u[i__];
oldl[i__ - 1] = l[i__];
/* L150: */
}
/* +-----------------------------------------------------------------------+ */
/* | Set version. | */
/* +-----------------------------------------------------------------------+ */
version = 204;
/* +-----------------------------------------------------------------------+ */
/* | Set parameters. | */
/* | If cheat > 0, we do not allow \tilde{K} to be larger than kmax, and| */
/* | set \tilde{K} to set value if necessary. Not used anymore. | */
/* +-----------------------------------------------------------------------+ */
cheat = 0;
kmax = 1e10;
mdeep = MAXDEEP;
/* +-----------------------------------------------------------------------+ */
/* | Write the header of the logfile. | */
/* +-----------------------------------------------------------------------+ */
direct_dirheader_(logfile, &version, &x[1], n, eps, maxf, maxt, &l[1], &u[1],
algmethod, &MAXFUNC, &MAXDEEP, fglobal, fglper, ierror, &epsfix, &
iepschange, volper, sigmaper);
/* +-----------------------------------------------------------------------+ */
/* | If an error has occurred while writing the header (we do some checking| */
/* | of variables there), return to the main program. | */
/* +-----------------------------------------------------------------------+ */
if (*ierror < 0) {
goto cleanup;
}
/* +-----------------------------------------------------------------------+ */
/* | If the known global minimum is equal 0, we cannot divide by it. | */
/* | Therefore we set it to 1. If not, we set the divisionfactor to the | */
/* | absolute value of the global minimum. | */
/* +-----------------------------------------------------------------------+ */
if (*fglobal == 0.) {
divfactor = 1.;
} else {
divfactor = fabs(*fglobal);
}
/* +-----------------------------------------------------------------------+ */
/* | Save the budget given by the user. The variable maxf will be changed | */
/* | if in the beginning no feasible points are found. | */
/* +-----------------------------------------------------------------------+ */
oldmaxf = *maxf;
increase = 0;
/* +-----------------------------------------------------------------------+ */
/* | Initialiase the lists. | */
/* +-----------------------------------------------------------------------+ */
direct_dirinitlist_(anchor, &ifree, point, f, &MAXFUNC, &MAXDEEP);
/* +-----------------------------------------------------------------------+ */
/* | Call the routine to initialise the mapping of x from the n-dimensional| */
/* | unit cube to the hypercube given by u and l. If an error occurred, | */
/* | give out a error message and return to the main program with the error| */
/* | flag set. | */
/* | JG 07/16/01 Changed call to remove unused data. | */
/* +-----------------------------------------------------------------------+ */
direct_dirpreprc_(&u[1], &l[1], n, &l[1], &u[1], &oops);
if (oops > 0) {
if (logfile)
fprintf(logfile,"WARNING: Initialization in DIRpreprc failed.\n");
*ierror = -3;
goto cleanup;
}
tstart = 2;
/* +-----------------------------------------------------------------------+ */
/* | Initialise the algorithm DIRECT. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Added variable to keep track of the maximum value found. | */
/* +-----------------------------------------------------------------------+ */
direct_dirinit_(f, fcn, c__, length, &actdeep, point, anchor, &ifree,
logfile, arrayi, &maxi, list2, w, &x[1], &l[1], &u[1],
minf, &minpos, thirds, levels, &MAXFUNC, &MAXDEEP, n, n, &
fmax, &ifeasiblef, &iinfesiblef, ierror, fcn_data, jones,
starttime, maxtime, force_stop);
/* +-----------------------------------------------------------------------+ */
/* | Added error checking. | */
/* +-----------------------------------------------------------------------+ */
if (*ierror < 0) {
if (*ierror == -4) {
if (logfile)
fprintf(logfile, "WARNING: Error occurred in routine DIRsamplepoints.\n");
goto cleanup;
}
if (*ierror == -5) {
if (logfile)
fprintf(logfile, "WARNING: Error occurred in routine DIRsamplef..\n");
goto cleanup;
}
if (*ierror == -102) goto L100;
}
else if (*ierror == DIRECT_MAXTIME_EXCEEDED) goto L100;
numfunc = maxi + 1 + maxi;
actmaxdeep = 1;
oldpos = 0;
tstart = 2;
/* +-----------------------------------------------------------------------+ */
/* | If no feasible point has been found, give out the iteration, the | */
/* | number of function evaluations and a warning. Otherwise, give out | */
/* | the iteration, the number of function evaluations done and minf. | */
/* +-----------------------------------------------------------------------+ */
if (ifeasiblef > 0) {
if (logfile)
fprintf(logfile, "No feasible point found in %d iterations "
"and %d function evaluations.\n", tstart-1, numfunc);
} else {
if (logfile)
fprintf(logfile, "%d, %d, %g, %g\n",
tstart-1, numfunc, *minf, fmax);
}
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Main loop! | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
i__1 = *maxt;
for (t = tstart; t <= i__1; ++t) {
/* +-----------------------------------------------------------------------+ */
/* | Choose the sample points. The indices of the sample points are stored | */
/* | in the list S. | */
/* +-----------------------------------------------------------------------+ */
actdeep = actmaxdeep;
direct_dirchoose_(anchor, s, &MAXDEEP, f, minf, *eps, epsabs, levels, &maxpos, length,
&MAXFUNC, &MAXDEEP, &MAXDIV, n, logfile, &cheat, &
kmax, &ifeasiblef, jones);
/* +-----------------------------------------------------------------------+ */
/* | Add other hyperrectangles to S, which have the same level and the same| */
/* | function value at the center as the ones found above (that are stored | */
/* | in S). This is only done if we use the original DIRECT algorithm. | */
/* | JG 07/16/01 Added Errorflag. | */
/* +-----------------------------------------------------------------------+ */
if (*algmethod == 0) {
direct_dirdoubleinsert_(anchor, s, &maxpos, point, f, &MAXDEEP, &MAXFUNC,
&MAXDIV, ierror);
if (*ierror == -6) {
if (logfile)
fprintf(logfile,
"WARNING: Capacity of array S in DIRDoubleInsert reached. Increase maxdiv.\n"
"This means that there are a lot of hyperrectangles with the same function\n"
"value at the center. We suggest to use our modification instead (Jones = 1)\n"
);
goto cleanup;
}
}
oldpos = minpos;
/* +-----------------------------------------------------------------------+ */
/* | Initialise the number of sample points in this outer loop. | */
/* +-----------------------------------------------------------------------+ */
newtosample = 0;
i__2 = maxpos;
for (j = 1; j <= i__2; ++j) {
actdeep = s[j + MAXDIV-1];
/* +-----------------------------------------------------------------------+ */
/* | If the actual index is a point to sample, do it. | */
/* +-----------------------------------------------------------------------+ */
if (s[j - 1] > 0) {
/* +-----------------------------------------------------------------------+ */
/* | JG 09/24/00 Calculate the value delta used for sampling points. | */
/* +-----------------------------------------------------------------------+ */
actdeep_div__ = direct_dirgetmaxdeep_(&s[j - 1], length, &MAXFUNC,
n);
delta = thirds[actdeep_div__ + 1];
actdeep = s[j + MAXDIV-1];
/* +-----------------------------------------------------------------------+ */
/* | If the current dept of division is only one under the maximal allowed | */
/* | dept, stop the computation. | */
/* +-----------------------------------------------------------------------+ */
if (actdeep + 1 >= mdeep) {
if (logfile)
fprintf(logfile, "WARNING: Maximum number of levels reached. Increase maxdeep.\n");
*ierror = -6;
goto L100;
}
actmaxdeep = MAX(actdeep,actmaxdeep);
help = s[j - 1];
if (! (anchor[actdeep + 1] == help)) {
pos1 = anchor[actdeep + 1];
while(! (point[pos1 - 1] == help)) {
pos1 = point[pos1 - 1];
}
point[pos1 - 1] = point[help - 1];
} else {
anchor[actdeep + 1] = point[help - 1];
}
if (actdeep < 0) {
actdeep = (integer) f[(help << 1) - 2];
}
/* +-----------------------------------------------------------------------+ */
/* | Get the Directions in which to decrease the intervall-length. | */
/* +-----------------------------------------------------------------------+ */
direct_dirget_i__(length, &help, arrayi, &maxi, n, &MAXFUNC);
/* +-----------------------------------------------------------------------+ */
/* | Sample the function. To do this, we first calculate the points where | */
/* | we need to sample the function. After checking for errors, we then do | */
/* | the actual evaluation of the function, again followed by checking for | */
/* | errors. | */
/* +-----------------------------------------------------------------------+ */
direct_dirsamplepoints_(c__, arrayi, &delta, &help, &start, length,
logfile, f, &ifree, &maxi, point, &x[
1], &l[1], minf, &minpos, &u[1], n, &MAXFUNC, &
MAXDEEP, &oops);
if (oops > 0) {
if (logfile)
fprintf(logfile, "WARNING: Error occurred in routine DIRsamplepoints.\n");
*ierror = -4;
goto cleanup;
}
newtosample += maxi;
/* +-----------------------------------------------------------------------+ */
/* | JG 01/22/01 Added variable to keep track of the maximum value found. | */
/* +-----------------------------------------------------------------------+ */
direct_dirsamplef_(c__, arrayi, &delta, &help, &start, length,
logfile, f, &ifree, &maxi, point, fcn, &x[
1], &l[1], minf, &minpos, &u[1], n, &MAXFUNC, &
MAXDEEP, &oops, &fmax, &ifeasiblef, &iinfesiblef,
fcn_data, force_stop);
if (force_stop && *force_stop) {
*ierror = -102;
goto L100;
}
if (nlopt_stop_time_(starttime, maxtime)) {
*ierror = DIRECT_MAXTIME_EXCEEDED;
goto L100;
}
if (oops > 0) {
if (logfile)
fprintf(logfile, "WARNING: Error occurred in routine DIRsamplef.\n");
*ierror = -5;
goto cleanup;
}
/* +-----------------------------------------------------------------------+ */
/* | Divide the intervalls. | */
/* +-----------------------------------------------------------------------+ */
direct_dirdivide_(&start, &actdeep_div__, length, point, arrayi, &
help, list2, w, &maxi, f, &MAXFUNC, &MAXDEEP, n);
/* +-----------------------------------------------------------------------+ */
/* | Insert the new intervalls into the list (sorted). | */
/* +-----------------------------------------------------------------------+ */
direct_dirinsertlist_(&start, anchor, point, f, &maxi, length, &
MAXFUNC, &MAXDEEP, n, &help, jones);
/* +-----------------------------------------------------------------------+ */
/* | Increase the number of function evaluations. | */
/* +-----------------------------------------------------------------------+ */
numfunc = numfunc + maxi + maxi;
}
/* +-----------------------------------------------------------------------+ */
/* | End of main loop. | */
/* +-----------------------------------------------------------------------+ */
/* L20: */
}
/* +-----------------------------------------------------------------------+ */
/* | If there is a new minimum, show the actual iteration, the number of | */
/* | function evaluations, the minimum value of f (so far) and the position| */
/* | in the array. | */
/* +-----------------------------------------------------------------------+ */
if (oldpos < minpos) {
if (logfile)
fprintf(logfile, "%d, %d, %g, %g\n",
t, numfunc, *minf, fmax);
}
/* +-----------------------------------------------------------------------+ */
/* | If no feasible point has been found, give out the iteration, the | */
/* | number of function evaluations and a warning. | */
/* +-----------------------------------------------------------------------+ */
if (ifeasiblef > 0) {
if (logfile)
fprintf(logfile, "No feasible point found in %d iterations "
"and %d function evaluations\n", t, numfunc);
}
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | Termination Checks | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | JG 01/22/01 Calculate the index for the hyperrectangle at which | */
/* | minf is assumed. We then calculate the volume of this | */
/* | hyperrectangle and store it in delta. This delta can be | */
/* | used to stop DIRECT once the volume is below a certain | */
/* | percentage of the original volume. Since the original | */
/* | is 1 (scaled), we can stop once delta is below a certain | */
/* | percentage, given by volper. | */
/* +-----------------------------------------------------------------------+ */
*ierror = jones;
jones = 0;
actdeep_div__ = direct_dirgetlevel_(&minpos, length, &MAXFUNC, n, jones);
jones = *ierror;
/* +-----------------------------------------------------------------------+ */
/* | JG 07/16/01 Use precalculated values to calculate volume. | */
/* +-----------------------------------------------------------------------+ */
delta = thirds[actdeep_div__] * 100;
if (delta <= *volper) {
*ierror = 4;
if (logfile)
fprintf(logfile, "DIRECT stopped: Volume of S_min is "
"%g%% < %g%% of the original volume.\n",
delta, *volper);
goto L100;
}
/* +-----------------------------------------------------------------------+ */
/* | JG 01/23/01 Calculate the measure for the hyperrectangle at which | */
/* | minf is assumed. If this measure is smaller then sigmaper,| */
/* | we stop DIRECT. | */
/* +-----------------------------------------------------------------------+ */
actdeep_div__ = direct_dirgetlevel_(&minpos, length, &MAXFUNC, n, jones);
delta = levels[actdeep_div__];
if (delta <= *sigmaper) {
*ierror = 5;
if (logfile)
fprintf(logfile, "DIRECT stopped: Measure of S_min "
"= %g < %g.\n", delta, *sigmaper);
goto L100;
}
/* +-----------------------------------------------------------------------+ */
/* | If the best found function value is within fglper of the (known) | */
/* | global minimum value, terminate. This only makes sense if this optimal| */
/* | value is known, that is, in test problems. | */
/* +-----------------------------------------------------------------------+ */
if ((*minf - *fglobal) * 100 / divfactor <= *fglper) {
*ierror = 3;
if (logfile)
fprintf(logfile, "DIRECT stopped: minf within fglper of global minimum.\n");
goto L100;
}
/* +-----------------------------------------------------------------------+ */
/* | Find out if there are infeasible points which are near feasible ones. | */
/* | If this is the case, replace the function value at the center of the | */
/* | hyper rectangle by the lowest function value of a nearby function. | */
/* | If no infeasible points exist (IInfesiblef = 0), skip this. | */
/* +-----------------------------------------------------------------------+ */
if (iinfesiblef > 0) {
direct_dirreplaceinf_(&ifree, &ifreeold, f, c__, thirds, length, anchor,
point, &u[1], &l[1], &MAXFUNC, &MAXDEEP, n, n,
logfile, &fmax, jones);
}
ifreeold = ifree;
/* +-----------------------------------------------------------------------+ */
/* | If iepschange = 1, we use the epsilon change formula from Jones. | */
/* +-----------------------------------------------------------------------+ */
if (iepschange == 1) {
/* Computing MAX */
d__1 = fabs(*minf) * 1e-4;
*eps = MAX(d__1,epsfix);
}
/* +-----------------------------------------------------------------------+ */
/* | If no feasible point has been found yet, set the maximum number of | */
/* | function evaluations to the number of evaluations already done plus | */
/* | the budget given by the user. | */
/* | If the budget has already be increased, increase it again. If a | */
/* | feasible point has been found, remark that and reset flag. No further | */
/* | increase is needed. | */
/* +-----------------------------------------------------------------------+ */
if (increase == 1) {
*maxf = numfunc + oldmaxf;
if (ifeasiblef == 0) {
if (logfile)
fprintf(logfile, "DIRECT found a feasible point. The "
"adjusted budget is now set to %d.\n", *maxf);
increase = 0;
}
}
/* +-----------------------------------------------------------------------+ */
/* | Check if the number of function evaluations done is larger than the | */
/* | allocated budget. If this is the case, check if a feasible point was | */
/* | found. If this is a case, terminate. If no feasible point was found, | */
/* | increase the budget and set flag increase. | */
/* +-----------------------------------------------------------------------+ */
if (numfunc > *maxf) {
if (ifeasiblef == 0) {
*ierror = 1;
if (logfile)
fprintf(logfile, "DIRECT stopped: numfunc >= maxf.\n");
goto L100;
} else {
increase = 1;
if (logfile)
fprintf(logfile,
"DIRECT could not find a feasible point after %d function evaluations.\n"
"DIRECT continues until a feasible point is found.\n", numfunc);
*maxf = numfunc + oldmaxf;
}
}
/* L10: */
}
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | End of main loop. | */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* +-----------------------------------------------------------------------+ */
/* | The algorithm stopped after maxT iterations. | */
/* +-----------------------------------------------------------------------+ */
*ierror = 2;
if (logfile)
fprintf(logfile, "DIRECT stopped: maxT iterations.\n");
L100:
/* +-----------------------------------------------------------------------+ */
/* | Store the position of the minimum in x. | */
/* +-----------------------------------------------------------------------+ */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
x[i__] = c__[i__ + minpos * i__1 - i__1-1] * l[i__] + l[i__] * u[i__];
u[i__] = oldu[i__ - 1];
l[i__] = oldl[i__ - 1];
/* L50: */
}
/* +-----------------------------------------------------------------------+ */
/* | Store the number of function evaluations in maxf. | */
/* +-----------------------------------------------------------------------+ */
*maxf = numfunc;
/* +-----------------------------------------------------------------------+ */
/* | Give out a summary of the run. | */
/* +-----------------------------------------------------------------------+ */
direct_dirsummary_(logfile, &x[1], &l[1], &u[1], n, minf, fglobal, &numfunc,
ierror);
/* +-----------------------------------------------------------------------+ */
/* | Format statements. | */
/* +-----------------------------------------------------------------------+ */
cleanup:
#define MY_FREE(p) if (p) free(p)
MY_FREE(c__);
MY_FREE(f);
MY_FREE(s);
MY_FREE(w);
MY_FREE(oldl);
MY_FREE(oldu);
MY_FREE(list2);
MY_FREE(point);
MY_FREE(anchor);
MY_FREE(length);
MY_FREE(arrayi);
MY_FREE(levels);
MY_FREE(thirds);
} /* direct_ */
|