1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
|
/***************************************************************************
* PacketParser.cc -- The PacketParser Class offers methods to parse *
* received network packets. Its main purpose is to facilitate the *
* conversion of raw sequences of bytes into chains of objects of the *
* PacketElement family. *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
*
* The Nmap Security Scanner is (C) 1996-2024 Nmap Software LLC ("The Nmap
* Project"). Nmap is also a registered trademark of the Nmap Project.
*
* This program is distributed under the terms of the Nmap Public Source
* License (NPSL). The exact license text applying to a particular Nmap
* release or source code control revision is contained in the LICENSE
* file distributed with that version of Nmap or source code control
* revision. More Nmap copyright/legal information is available from
* https://nmap.org/book/man-legal.html, and further information on the
* NPSL license itself can be found at https://nmap.org/npsl/ . This
* header summarizes some key points from the Nmap license, but is no
* substitute for the actual license text.
*
* Nmap is generally free for end users to download and use themselves,
* including commercial use. It is available from https://nmap.org.
*
* The Nmap license generally prohibits companies from using and
* redistributing Nmap in commercial products, but we sell a special Nmap
* OEM Edition with a more permissive license and special features for
* this purpose. See https://nmap.org/oem/
*
* If you have received a written Nmap license agreement or contract
* stating terms other than these (such as an Nmap OEM license), you may
* choose to use and redistribute Nmap under those terms instead.
*
* The official Nmap Windows builds include the Npcap software
* (https://npcap.com) for packet capture and transmission. It is under
* separate license terms which forbid redistribution without special
* permission. So the official Nmap Windows builds may not be redistributed
* without special permission (such as an Nmap OEM license).
*
* Source is provided to this software because we believe users have a
* right to know exactly what a program is going to do before they run it.
* This also allows you to audit the software for security holes.
*
* Source code also allows you to port Nmap to new platforms, fix bugs, and
* add new features. You are highly encouraged to submit your changes as a
* Github PR or by email to the dev@nmap.org mailing list for possible
* incorporation into the main distribution. Unless you specify otherwise, it
* is understood that you are offering us very broad rights to use your
* submissions as described in the Nmap Public Source License Contributor
* Agreement. This is important because we fund the project by selling licenses
* with various terms, and also because the inability to relicense code has
* caused devastating problems for other Free Software projects (such as KDE
* and NASM).
*
* The free version of Nmap is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties,
* indemnification and commercial support are all available through the
* Npcap OEM program--see https://nmap.org/oem/
*
***************************************************************************/
/* This code was originally part of the Nping tool. */
#include "PacketParser.h"
#include <assert.h>
#define PKTPARSERDEBUG false
PacketParser::PacketParser() {
this->reset();
} /* End of PacketParser constructor */
PacketParser::~PacketParser() {
} /* End of PacketParser destructor */
/** Sets every attribute to its default value- */
void PacketParser::reset() {
} /* End of PacketParser destructor */
const char *PacketParser::header_type2string(int val){
header_type_string_t header_types[]={
{HEADER_TYPE_IPv6_HOPOPT, "IPv6 Hop-by-Hop"},
{HEADER_TYPE_ICMPv4,"ICMPv4"},
{HEADER_TYPE_IGMP,"IGMP"},
{HEADER_TYPE_IPv4,"IPv4"},
{HEADER_TYPE_TCP,"TCP"},
{HEADER_TYPE_EGP,"EGP"},
{HEADER_TYPE_UDP,"UDP"},
{HEADER_TYPE_IPv6,"IPv6"},
{HEADER_TYPE_IPv6_ROUTE,"IPv6-Route"},
{HEADER_TYPE_IPv6_FRAG,"IPv6-Frag"},
{HEADER_TYPE_GRE,"GRE"},
{HEADER_TYPE_ESP,"ESP"},
{HEADER_TYPE_AH,"AH"},
{HEADER_TYPE_ICMPv6,"ICMPv6"},
{HEADER_TYPE_IPv6_NONXT,"IPv6-NoNxt"},
{HEADER_TYPE_IPv6_OPTS,"IPv6-Opts"},
{HEADER_TYPE_EIGRP,"EIGRP"},
{HEADER_TYPE_ETHERNET,"Ethernet"},
{HEADER_TYPE_L2TP,"L2TP"},
{HEADER_TYPE_SCTP,"SCTP"},
{HEADER_TYPE_IPv6_MOBILE,"Mobility Header"},
{HEADER_TYPE_MPLS_IN_IP,"MPLS-in-IP"},
{HEADER_TYPE_ARP,"ARP"},
{HEADER_TYPE_RAW_DATA,"Raw Data"},
{0,NULL}
};
int i=0;
for(i=0; header_types[i].str!=NULL; i++ ){
if((int)header_types[i].type==val)
return header_types[i].str;
}
return NULL;
} /* End of header_type2string() */
#define MAX_HEADERS_IN_PACKET 32
pkt_type_t *PacketParser::parse_packet(const u8 *pkt, size_t pktlen, bool eth_included){
if(PKTPARSERDEBUG)printf("%s(%p, %lu)\n", __func__, pkt, (long unsigned)pktlen);
static pkt_type_t this_packet[MAX_HEADERS_IN_PACKET+1]; /* Packet structure array */
u8 current_header=0; /* Current array position of "this_packet" */
const u8 *curr_pkt=pkt; /* Pointer to current part of the packet */
size_t curr_pktlen=pktlen; /* Remaining packet length */
int ethlen=0, arplen=0; /* Aux length variables: link layer */
int iplen=0,ip6len=0; /* Aux length variables: network layer */
int tcplen=0,udplen=0,icmplen=0; /* Aux length variables: transport layer */
int exthdrlen=0; /* Aux length variables: extension headers */
int next_layer=0; /* Next header type to process */
int expected=0; /* Next protocol expected */
bool finished=false; /* Loop breaking flag */
bool unknown_hdr=false; /* Indicates unknown header found */
IPv4Header ip4;
IPv6Header ip6;
TCPHeader tcp;
UDPHeader udp;
ICMPv4Header icmp4;
ICMPv6Header icmp6;
EthernetHeader eth;
DestOptsHeader ext_dopts;
FragmentHeader ext_frag;
HopByHopHeader ext_hopt;
RoutingHeader ext_routing;
ARPHeader arp;
memset(this_packet, 0, sizeof(this_packet));
/* Decide which layer we have to start from */
if( eth_included ){
next_layer=LINK_LAYER;
expected=HEADER_TYPE_ETHERNET;
}else{
next_layer=NETWORK_LAYER;
}
/* Header processing loop */
while(!finished && curr_pktlen>0 && current_header<MAX_HEADERS_IN_PACKET){
/* Ethernet and ARP headers ***********************************************/
if(next_layer==LINK_LAYER ){
if(PKTPARSERDEBUG)puts("Next Layer=Link");
if(expected==HEADER_TYPE_ETHERNET){
if(PKTPARSERDEBUG)puts("Expected Layer=Ethernet");
if(eth.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE){
unknown_hdr=true;
break;
}
if( (ethlen=eth.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
/* Determine next header type */
switch( eth.getEtherType() ){
case ETHTYPE_IPV4:
expected=HEADER_TYPE_IPv4;
next_layer=NETWORK_LAYER;
break;
case ETHTYPE_IPV6:
expected=HEADER_TYPE_IPv6;
next_layer=NETWORK_LAYER;
break;
case ETHTYPE_ARP:
next_layer=LINK_LAYER;
expected=HEADER_TYPE_ARP;
break;
default:
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
break;
}
this_packet[current_header].length=ethlen;
this_packet[current_header++].type=HEADER_TYPE_ETHERNET;
eth.reset();
curr_pkt+=ethlen;
curr_pktlen-=ethlen;
}else if(expected==HEADER_TYPE_ARP){
if(PKTPARSERDEBUG)puts("Expected Layer=ARP");
if(arp.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE){
unknown_hdr=true;
break;
}
if( (arplen=arp.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
this_packet[current_header].length=arplen;
this_packet[current_header++].type=HEADER_TYPE_ARP;
arp.reset();
curr_pkt+=arplen;
curr_pktlen-=arplen;
if(curr_pktlen>0){
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
}else{
finished=true;
}
}else{
assert(finished==true);
}
/* IPv4 and IPv6 headers **************************************************/
}else if(next_layer==NETWORK_LAYER){
if(PKTPARSERDEBUG)puts("Next Layer=Network");
/* Determine IP version */
if (ip4.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE){
unknown_hdr=true;
break;
}
/* IP version 4 ---------------------------------*/
if(ip4.getVersion()==4){
if( (iplen=ip4.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
/* Determine next header type */
switch(ip4.getNextProto()){
case HEADER_TYPE_ICMPv4:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_ICMPv4;
break;
case HEADER_TYPE_IPv4: /* IP in IP */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv4;
break;
case HEADER_TYPE_TCP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_TCP;
break;
case HEADER_TYPE_UDP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_UDP;
break;
case HEADER_TYPE_IPv6: /* IPv6 in IPv4 */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv6;
break;
default:
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
break;
}
this_packet[current_header].length=iplen;
this_packet[current_header++].type=HEADER_TYPE_IPv4;
ip4.reset();
curr_pkt+=iplen;
curr_pktlen-=iplen;
/* IP version 6 ---------------------------------*/
}else if(ip4.getVersion()==6){
ip4.reset();
if (ip6.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE){
unknown_hdr=true;
break;
}
if( (ip6len=ip6.validate())==OP_FAILURE ){
unknown_hdr=true;
break;
}
switch( ip6.getNextHeader() ){
case HEADER_TYPE_ICMPv6:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_ICMPv6;
break;
case HEADER_TYPE_IPv4: /* IPv4 in IPv6 */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv4;
break;
case HEADER_TYPE_TCP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_TCP;
break;
case HEADER_TYPE_UDP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_UDP;
break;
case HEADER_TYPE_IPv6: /* IPv6 in IPv6 */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv6;
break;
case HEADER_TYPE_IPv6_HOPOPT:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_HOPOPT;
break;
case HEADER_TYPE_IPv6_OPTS:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_OPTS;
break;
case HEADER_TYPE_IPv6_ROUTE:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_ROUTE;
break;
case HEADER_TYPE_IPv6_FRAG:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_FRAG;
break;
default:
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
break;
}
this_packet[current_header].length=ip6len;
this_packet[current_header++].type=HEADER_TYPE_IPv6;
ip6.reset();
curr_pkt+=ip6len;
curr_pktlen-=ip6len;
/* Bogus IP version -----------------------------*/
}else{
/* Wrong IP version, treat as raw data. */
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
}
/* TCP, UDP, ICMPv4 and ICMPv6 headers ************************************/
}else if(next_layer==TRANSPORT_LAYER){
if(PKTPARSERDEBUG)puts("Next Layer=Transport");
if(expected==HEADER_TYPE_TCP){
if(PKTPARSERDEBUG)puts("Expected Layer=TCP");
if(tcp.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (tcplen=tcp.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
expected=HEADER_TYPE_RAW_DATA;
this_packet[current_header].length=tcplen;
this_packet[current_header++].type=HEADER_TYPE_TCP;
tcp.reset();
curr_pkt+=tcplen;
curr_pktlen-=tcplen;
next_layer=APPLICATION_LAYER;
}else if(expected==HEADER_TYPE_UDP){
if(PKTPARSERDEBUG)puts("Expected Layer=UDP");
if(udp.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (udplen=udp.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
expected=HEADER_TYPE_RAW_DATA;
this_packet[current_header].length=udplen;
this_packet[current_header++].type=HEADER_TYPE_UDP;
udp.reset();
curr_pkt+=udplen;
curr_pktlen-=udplen;
next_layer=APPLICATION_LAYER;
}else if(expected==HEADER_TYPE_ICMPv4){
if(PKTPARSERDEBUG)puts("Expected Layer=ICMPv4");
if(icmp4.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (icmplen=icmp4.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
switch( icmp4.getType() ){
/* Types that include an IPv4 packet as payload */
case ICMP_UNREACH:
case ICMP_TIMXCEED:
case ICMP_PARAMPROB:
case ICMP_SOURCEQUENCH:
case ICMP_REDIRECT:
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv4;
break;
/* ICMP types that include misc payloads (or no payload) */
default:
expected=HEADER_TYPE_RAW_DATA;
next_layer=APPLICATION_LAYER;
break;
}
this_packet[current_header].length=icmplen;
this_packet[current_header++].type=HEADER_TYPE_ICMPv4;
icmp4.reset();
curr_pkt+=icmplen;
curr_pktlen-=icmplen;
}else if(expected==HEADER_TYPE_ICMPv6){
if(PKTPARSERDEBUG)puts("Expected Layer=ICMPv6");
if(icmp6.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE){
unknown_hdr=true;
break;
}
if( (icmplen=icmp6.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
switch( icmp6.getType() ){
/* Types that include an IPv6 packet as payload */
case ICMPv6_UNREACH:
case ICMPv6_PKTTOOBIG:
case ICMPv6_TIMXCEED:
case ICMPv6_PARAMPROB:
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv6;
break;
/* ICMPv6 types that include misc payloads (or no payload) */
default:
expected=HEADER_TYPE_RAW_DATA;
next_layer=APPLICATION_LAYER;
break;
}
this_packet[current_header].length=icmplen;
this_packet[current_header++].type=HEADER_TYPE_ICMPv6;
icmp6.reset();
curr_pkt+=icmplen;
curr_pktlen-=icmplen;
}else{
/* Wrong application layer protocol, treat as raw data. */
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
}
/* IPv6 Extension Headers */
}else if(next_layer==EXTHEADERS_LAYER){
if(PKTPARSERDEBUG)puts("Next Layer=ExtHdr");
u8 ext_next=0;
/* Hop-by-Hop Options */
if(expected==HEADER_TYPE_IPv6_HOPOPT){
if(PKTPARSERDEBUG)puts("Expected=Hopt");
if(ext_hopt.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (exthdrlen=ext_hopt.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
ext_next=ext_hopt.getNextHeader();
ext_hopt.reset();
/* Routing Header */
}else if(expected==HEADER_TYPE_IPv6_ROUTE){
if(PKTPARSERDEBUG)puts("Expected=Route");
if(ext_routing.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (exthdrlen=ext_routing.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
ext_next=ext_routing.getNextHeader();
ext_routing.reset();
/* Fragmentation Header */
}else if(expected==HEADER_TYPE_IPv6_FRAG){
if(PKTPARSERDEBUG)puts("Expected=Frag");
if(ext_frag.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (exthdrlen=ext_frag.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
ext_next=ext_frag.getNextHeader();
ext_frag.reset();
/* Destination Options Header */
}else if(expected==HEADER_TYPE_IPv6_OPTS){
if(PKTPARSERDEBUG)puts("Expected=Dopts");
if(ext_dopts.storeRecvData(curr_pkt, curr_pktlen)==OP_FAILURE ){
unknown_hdr=true;
break;
}
if( (exthdrlen=ext_dopts.validate())==OP_FAILURE){
unknown_hdr=true;
break;
}
ext_next=ext_dopts.getNextHeader();
ext_dopts.reset();
}else{
/* Should never happen. */
unknown_hdr=true;
break;
}
/* Update the info for this header */
this_packet[current_header].length=exthdrlen;
this_packet[current_header++].type=expected;
curr_pkt+=exthdrlen;
curr_pktlen-=exthdrlen;
/* Lets's see what comes next */
switch(ext_next){
case HEADER_TYPE_ICMPv6:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_ICMPv6;
break;
case HEADER_TYPE_IPv4: /* IPv4 in IPv6 */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv4;
break;
case HEADER_TYPE_TCP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_TCP;
break;
case HEADER_TYPE_UDP:
next_layer=TRANSPORT_LAYER;
expected=HEADER_TYPE_UDP;
break;
case HEADER_TYPE_IPv6: /* IPv6 in IPv6 */
next_layer=NETWORK_LAYER;
expected=HEADER_TYPE_IPv6;
break;
case HEADER_TYPE_IPv6_HOPOPT:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_HOPOPT;
break;
case HEADER_TYPE_IPv6_OPTS:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_OPTS;
break;
case HEADER_TYPE_IPv6_ROUTE:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_ROUTE;
break;
case HEADER_TYPE_IPv6_FRAG:
next_layer=EXTHEADERS_LAYER;
expected=HEADER_TYPE_IPv6_FRAG;
break;
default:
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
break;
}
/* Miscellaneous payloads *************************************************/
}else{ // next_layer==APPLICATION_LAYER
if(PKTPARSERDEBUG)puts("Next Layer=Application");
/* If we get here it is possible that the packet is ARP but
* we have no access to the original Ethernet header. We
* determine if this header is ARP by checking its size
* and checking for some common values. */
if(arp.storeRecvData(curr_pkt, curr_pktlen)!=OP_FAILURE){
if( (arplen=arp.validate())!=OP_FAILURE){
if(arp.getHardwareType()==HDR_ETH10MB){
if(arp.getProtocolType()==0x0800){
if(arp.getHwAddrLen()==ETH_ADDRESS_LEN){
if(arp.getProtoAddrLen()==IPv4_ADDRESS_LEN){
this_packet[current_header].length=arplen;
this_packet[current_header++].type=HEADER_TYPE_ARP;
arp.reset();
curr_pkt+=arplen;
curr_pktlen-=arplen;
if(curr_pktlen>0){
next_layer=APPLICATION_LAYER;
expected=HEADER_TYPE_RAW_DATA;
}else{
finished=true;
}
}
}
}
}
}
}
//if(expected==HEADER_TYPE_DNS){
//}else if(expected==HEADER_TYPE_HTTP){
//}... ETC
this_packet[current_header].length=curr_pktlen;
this_packet[current_header++].type=HEADER_TYPE_RAW_DATA;
curr_pktlen=0;
finished=true;
}
} /* End of header processing loop */
/* If we couldn't validate some header, treat that header and any remaining
* data, as raw application data. */
if (unknown_hdr==true){
if(curr_pktlen>0){
if(PKTPARSERDEBUG)puts("Unknown layer found. Treating it as raw data.");
this_packet[current_header].length=curr_pktlen;
this_packet[current_header++].type=HEADER_TYPE_RAW_DATA;
}
}
return this_packet;
} /* End of parse_received_packet() */
/* TODO: remove */
int PacketParser::dummy_print_packet_type(const u8 *pkt, size_t pktlen, bool eth_included){
pkt_type_t *packetheaders=PacketParser::parse_packet(pkt, pktlen, eth_included);
for(int i=0; packetheaders[i].length!=0; i++){
printf("%s:", header_type2string(packetheaders[i].type));
}
printf("\n");
return OP_SUCCESS;
} /* End of dummy_print_packet_type() */
int PacketParser::dummy_print_packet(const u8 *pkt, size_t pktlen, bool eth_included){
PacketElement *me=NULL, *aux=NULL;
if( (me=split(pkt, pktlen, eth_included))==NULL )
return OP_FAILURE;
else{
me->print(stdout, PRINT_DETAIL_HIGH);
printf("\n");
}
/* Free the structs */
while(me!=NULL){
aux=me->getNextElement();
delete me;
me=aux;
}
return OP_SUCCESS;
} /* End of dummy_print_packet() */
/** For a given packet, this method determines where the application layer data
* begins. It returs a positive offset if any application data was found, zero
* if the packet did not contain application data and a negative integer in
* case of error. */
int PacketParser::payload_offset(const u8 *pkt, size_t pktlen, bool link_included){
PacketElement *me=NULL, *aux=NULL;
size_t offset=pktlen; /* Initially, point to the end of the packet. */
/* Safe checks*/
if(pkt==NULL || pktlen<=0)
return -1;
dummy_print_packet_type(pkt, pktlen, link_included);
/* Split the packet into separate protocol headers */
if( (me=split(pkt, pktlen, link_included))==NULL )
return -2;
else{
aux=me;
}
/* Find if there is application data and where it begins */
while(me!=NULL){
/* When we find application data, we compute the offset by substacting the
length of the application data from the packet's total length */
if(me->protocol_id()==HEADER_TYPE_RAW_DATA){
offset = pktlen - me->getLen();
break;
}
me = me->getNextElement();
}
/* Free the structs */
me=aux;
while(me!=NULL){
aux=me->getNextElement();
delete me;
me=aux;
}
/* Return 0 if we didn't find any application data */
if(offset==pktlen){
return 0;
}else{
return offset;
}
} /* End of payload_offset() */
PacketElement *PacketParser::split(const u8 *pkt, size_t pktlen){
return split(pkt, pktlen, false);
} /* End of split() */
PacketElement *PacketParser::split(const u8 *pkt, size_t pktlen, bool eth_included){
pkt_type_t *packetheaders=NULL;
const u8 *curr_pkt=pkt;
PacketElement *first=NULL;
PacketElement *last=NULL;
IPv4Header *ip4=NULL;
IPv6Header *ip6=NULL;
DestOptsHeader *ext_dopts=NULL;
FragmentHeader *ext_frag=NULL;
HopByHopHeader *ext_hopt=NULL;
RoutingHeader *ext_routing=NULL;
TCPHeader *tcp=NULL;
UDPHeader *udp=NULL;
ICMPv4Header *icmp4=NULL;
ICMPv6Header *icmp6=NULL;
EthernetHeader *eth=NULL;
ARPHeader *arp=NULL;
RawData *raw=NULL;
/* Analyze the packet. This returns a list of header types and lengths */
if((packetheaders=PacketParser::parse_packet(pkt, pktlen, eth_included))==NULL)
return NULL;
/* Store each header in its own PacketHeader object type */
for(int i=0; packetheaders[i].length!=0; i++){
switch(packetheaders[i].type){
case HEADER_TYPE_ETHERNET:
eth=new EthernetHeader();
eth->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=eth;
}else{
last->setNextElement(eth);
}
last=eth;
break;
case HEADER_TYPE_ARP:
arp=new ARPHeader();
arp->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=arp;
}else{
last->setNextElement(arp);
}
last=arp;
break;
case HEADER_TYPE_IPv4:
ip4=new IPv4Header();
ip4->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ip4;
}else{
last->setNextElement(ip4);
}
last=ip4;
break;
case HEADER_TYPE_IPv6:
ip6=new IPv6Header();
ip6->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ip6;
}else{
last->setNextElement(ip6);
}
last=ip6;
break;
case HEADER_TYPE_TCP:
tcp=new TCPHeader();
tcp->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=tcp;
}else{
last->setNextElement(tcp);
}
last=tcp;
break;
case HEADER_TYPE_UDP:
udp=new UDPHeader();
udp->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=udp;
}else{
last->setNextElement(udp);
}
last=udp;
break;
case HEADER_TYPE_ICMPv4:
icmp4=new ICMPv4Header();
icmp4->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=icmp4;
}else{
last->setNextElement(icmp4);
}
last=icmp4;
break;
case HEADER_TYPE_ICMPv6:
icmp6=new ICMPv6Header();
icmp6->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=icmp6;
}else{
last->setNextElement(icmp6);
}
last=icmp6;
break;
case HEADER_TYPE_IPv6_HOPOPT:
ext_hopt=new HopByHopHeader();
ext_hopt->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ext_hopt;
}else{
last->setNextElement(ext_hopt);
}
last=ext_hopt;
break;
case HEADER_TYPE_IPv6_ROUTE:
ext_routing=new RoutingHeader();
ext_routing->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ext_routing;
}else{
last->setNextElement(ext_routing);
}
last=ext_routing;
break;
case HEADER_TYPE_IPv6_FRAG:
ext_frag=new FragmentHeader();
ext_frag->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ext_frag;
}else{
last->setNextElement(ext_frag);
}
last=ext_frag;
break;
case HEADER_TYPE_IPv6_OPTS:
ext_dopts=new DestOptsHeader();
ext_dopts->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=ext_dopts;
}else{
last->setNextElement(ext_dopts);
}
last=ext_dopts;
break;
case HEADER_TYPE_RAW_DATA:
default:
raw=new RawData();
raw->storeRecvData(curr_pkt, packetheaders[i].length);
if(first==NULL){
first=raw;
}else{
last->setNextElement(raw);
}
last=raw;
break;
}
curr_pkt+=packetheaders[i].length;
}
return first;
} /* End of split() */
/* This method frees a chain of PacketElement objects. Note that objects in
* the chain are freed by calling "delete" on them, so only those instances
* that have been obtained through a call to "new" should be passed to this
* method. Chains returned by PacketParser::split() are safe to use with this.*/
int PacketParser::freePacketChain(PacketElement *first){
PacketElement *curr=first;
PacketElement *next=NULL;
while(curr!=NULL){
next=curr->getNextElement();
delete curr;
curr=next;
}
return OP_SUCCESS;
} /* End of freePacketChain() */
/* This method is for debugging purposes only. It tests the packet parser and
* the PacketElement class family. Basically it checks that the supplied
* chain of PacketElements can be serialized and de-serialized correctly.
* Returns NULL on success or an error string in case of failure. */
const char *PacketParser::test_packet_parser(PacketElement *test_pkt){
const char *errmsg=NULL;
PacketElement *parsed_pkt=NULL;
PacketElement *orig_pkt=NULL;
PacketElement *new_pkt=NULL;
u8 *mypktbuff2=NULL;
u8 *mypktbuff=NULL;
if(test_pkt==NULL){
errmsg="NULL pointer supplied";
goto end;
}
/* Generate a serialized version of the packet */
mypktbuff=(u8 *)safe_malloc(test_pkt->getLen());
test_pkt->dumpToBinaryBuffer(mypktbuff, test_pkt->getLen());
/* Generate a chain of PacketElement objects from the serialized version. */
parsed_pkt=PacketParser::split(mypktbuff, test_pkt->getLen());
if(parsed_pkt==NULL){
errmsg="PacketParser::split() returned NULL";
goto end;
}
if(parsed_pkt->getLen()!=test_pkt->getLen()){
errmsg="Packets have different lengths";
goto end;
}
/* Generate a serialized version of the new chain */
mypktbuff2=(u8 *)safe_malloc(parsed_pkt->getLen());
parsed_pkt->dumpToBinaryBuffer(mypktbuff2, parsed_pkt->getLen());
/* Make sure both packets produce the exact same binary buffer */
if(memcmp(mypktbuff, mypktbuff2, parsed_pkt->getLen())!=0){
errmsg="The two packets do not result in the same binary buffer";
goto end;
}
/* Now let's check that both chains have the same number and type of
* PacketElements. */
orig_pkt=test_pkt;
new_pkt=parsed_pkt;
while(orig_pkt!=NULL && new_pkt!=NULL){
if(orig_pkt->protocol_id() != new_pkt->protocol_id() ){
errmsg="Protocol IDs do not match";
goto end;
}
orig_pkt=orig_pkt->getNextElement();
new_pkt=new_pkt->getNextElement();
}
if(orig_pkt!=NULL || new_pkt!=NULL){
errmsg="The two packets do not have the same number of chained elements.";
goto end;
}
end:
/* Free our allocations */
if(mypktbuff!=NULL)
free(mypktbuff);
if(mypktbuff2!=NULL)
free(mypktbuff2);
if(parsed_pkt!=NULL)
PacketParser::freePacketChain(parsed_pkt);
/* If everything went well, errmsg should still be NULL. Otherwise it
* should point to an error message.*/
return errmsg;
}
/* Returns true if the supplied "rcvd" packet is a response to the "sent" packet.
* This method currently handles IPv4, IPv6, ICMPv4, ICMPv6, TCP and UDP. Here
* some examples of what can be matched using it:
*
* Probe: TCP SYN -> Response TCP SYN|ACK
* Probe: TCP SYN -> Response TCP RST|ACK
* Probe: UDP:53 -> Response UDP from port 53.
* Probe ICMP Echo -> Response ICMP Echo reply
* Probe ICMPv6 Neighbor Solicitation -> Response ICMPv6 Neighbor Advert
* Probe Malformed IPv6 -> Response ICMPv6 Parameter Problem
* Probe MLDv1 Query -> Response MLDv1 Report
* Probe ICMP Timestamp request -> Response ICMP timestamp response
* etc...
*
* Note that ICMP error messages are matched against sent probes (e.g: an ICMP
* Parameter Problem generated as a result of an invalid TCP segment is matched
* positively with the original TCP segment). Therefore, the caller must ensure
* that the received packet is what it expects before using it (e.g: the packet
* is an actual TCP packet, not an ICMP error).
*
* Warning: this method assumes that the probes you send are reasonably
* different from each other. Don't expect a 100% accuracy if you send a bunch
* of TCP segments with the same source and destination port numbers, or a
* bunch of ICMP messages with the same identifier and sequence number. */
bool PacketParser::is_response(PacketElement *sent, PacketElement *rcvd){
if(PKTPARSERDEBUG)printf("%s(): called\n", __func__);
if(sent==NULL || rcvd==NULL)
return false;
/* If any of the packets is encapsulated in an Ethernet frame, strip the
* link layer header before proceeding with the matching process. */
if(rcvd->protocol_id()==HEADER_TYPE_ETHERNET)
if( (rcvd=rcvd->getNextElement())==NULL)
return false;
if(sent->protocol_id()==HEADER_TYPE_ETHERNET)
if( (sent=sent->getNextElement())==NULL)
return false;
/* Make sure both packets have the same network layer */
if(rcvd->protocol_id()!=sent->protocol_id())
return false;
/* The packet could be ARP */
if(rcvd->protocol_id()==HEADER_TYPE_ARP){
ARPHeader *sent_arp=(ARPHeader *)sent;
ARPHeader *rcvd_arp=(ARPHeader *)rcvd;
switch(sent_arp->getOpCode()){
case OP_ARP_REQUEST:
if(rcvd_arp->getOpCode()==OP_ARP_REPLY){
/* TODO @todo: getTargetIP() and getSenderIP() should
* either return struct in_addr or IPAddress but not u32. */
if(sent_arp->getTargetIP()==rcvd_arp->getSenderIP())
if(sent_arp->getSenderIP()==rcvd_arp->getTargetIP())
return true;
}
return false;
break;
/* We only support ARP, not RARP or other weird stuff. Also, if
* we didn't send a request, then we don't expect any response */
case OP_RARP_REQUEST:
case OP_DRARP_REQUEST:
case OP_INARP_REQUEST:
default:
return false;
break;
}
return false;
}
/* The packet is IPv4 or IPv6 */
if(rcvd->protocol_id()!=HEADER_TYPE_IPv6 && rcvd->protocol_id()!=HEADER_TYPE_IPv4)
return false;
if(PKTPARSERDEBUG)printf("%s(): Both packets use IP.\n", __func__);
/* Handle the network layer with a more specific class */
NetworkLayerElement *rcvd_ip=(NetworkLayerElement *)rcvd;
NetworkLayerElement *sent_ip=(NetworkLayerElement *)sent;
/* Ensure the packet comes from the host we sent the probe to */
if( memcmp(rcvd_ip->getSourceAddress(), sent_ip->getDestinationAddress(), rcvd_ip->getAddressLength())!=0 )
return false;
/* Ensure the received packet is destined to us */
if( memcmp(rcvd_ip->getDestinationAddress(), sent_ip->getSourceAddress(), rcvd_ip->getAddressLength())!=0 )
return false;
if(PKTPARSERDEBUG)printf("%s(): Src and Dst addresses make sense.\n", __func__);
/* Skip layers until we find ICMP or a transport protocol */
PacketElement *rcvd_layer4=rcvd_ip->getNextElement();
PacketElement *sent_layer4=sent_ip->getNextElement();
while(rcvd_layer4!=NULL){
if(rcvd_layer4->protocol_id()==HEADER_TYPE_UDP || rcvd_layer4->protocol_id()==HEADER_TYPE_TCP ||
rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv4 || rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv6 ){
break;
}else{
rcvd_layer4=rcvd_layer4->getNextElement();
}
}
while(sent_layer4!=NULL){
if(sent_layer4->protocol_id()==HEADER_TYPE_UDP || sent_layer4->protocol_id()==HEADER_TYPE_TCP ||
sent_layer4->protocol_id()==HEADER_TYPE_ICMPv4 || sent_layer4->protocol_id()==HEADER_TYPE_ICMPv6 ){
break;
}else{
sent_layer4=sent_layer4->getNextElement();
}
}
if(rcvd_layer4==NULL || sent_layer4==NULL)
return false;
if(PKTPARSERDEBUG)printf("%s(): Layer 4 found for both packets.\n", __func__);
/* If we get here it means that both packets have a proper layer4 protocol
* header. Now we have to check which type are they and see if a probe-response
* relation can be established. */
if(sent_layer4->protocol_id()==HEADER_TYPE_ICMPv6 || sent_layer4->protocol_id()==HEADER_TYPE_ICMPv4){
if(PKTPARSERDEBUG)printf("%s(): Sent packet is ICMP.\n", __func__);
/* Make sure received packet is ICMP (we only expect ICMP responses for
* ICMP probes) */
if(rcvd_layer4->protocol_id()!=HEADER_TYPE_ICMPv6 && rcvd_layer4->protocol_id()!=HEADER_TYPE_ICMPv4 )
return false;
/* Make sure both packets have the same ICMP version */
if(sent_layer4->protocol_id()!=rcvd_layer4->protocol_id())
return false;
if(PKTPARSERDEBUG)printf("%s(): Received packet is ICMP too.\n", __func__);
/* Check if the received ICMP is an error message. We don't care which kind
* of error message it is. The only important thing is that error messages
* contain a copy of the original datagram, and that's what we want to
* match against the sent probe. */
if( ((ICMPHeader *)rcvd_layer4)->isError() ){
NetworkLayerElement *iperror=(NetworkLayerElement *)rcvd_layer4->getNextElement();
if(PKTPARSERDEBUG)printf("%s(): Received ICMP is an error message.\n", __func__);
/* ICMP error message must contain the original datagram */
if(iperror==NULL)
return false;
/* The first header must be IP */
if(iperror->protocol_id()!=HEADER_TYPE_IPv6 && iperror->protocol_id()!=HEADER_TYPE_IPv4)
return false;
/* The IP version must match the probe's */
if(iperror->protocol_id()!=sent_ip->protocol_id())
return false;
/* Source and destination addresses must match the probe's */
if( memcmp(iperror->getSourceAddress(), sent_ip->getSourceAddress(), iperror->getAddressLength())!=0 )
return false;
if( memcmp(iperror->getDestinationAddress(), sent_ip->getDestinationAddress(), iperror->getAddressLength())!=0 )
return false;
/* So far we've verified that the ICMP error contains an IP datagram that matches
* what we sent. Now, let's find the upper layer ICMP header (skip extension
* headers until we find ICMP) */
ICMPHeader *inner_icmp=(ICMPHeader *)iperror->getNextElement();
while(inner_icmp!=NULL){
if(inner_icmp->protocol_id()==HEADER_TYPE_ICMPv4 || inner_icmp->protocol_id()==HEADER_TYPE_ICMPv6 ){
break;
}else{
inner_icmp=(ICMPHeader *)inner_icmp->getNextElement();
}
}
if(inner_icmp==NULL)
return false;
/* If we get here it means that we've found an ICMP header inside the
* ICMP error message that we received. First of all, check that the
* ICMP version matches what we sent. */
if(sent_layer4->protocol_id() != inner_icmp->protocol_id())
return false;
/* Make sure ICMP type and code match */
if( ((ICMPHeader*)sent_layer4)->getType() != inner_icmp->getType() )
return false;
if( ((ICMPHeader*)sent_layer4)->getCode() != inner_icmp->getCode() )
return false;
/* Now go into a bit of detail and try to determine if both headers
* are equal, comparing the values of specific fields. */
if(sent_layer4->protocol_id()==HEADER_TYPE_ICMPv6){
ICMPv6Header *sent_icmp6=(ICMPv6Header *)sent_layer4;
ICMPv6Header *inner_icmp6=(ICMPv6Header *)inner_icmp;
switch(sent_icmp6->getType()){
case ICMPv6_UNREACH:
case ICMPv6_TIMXCEED :
/* For these we cannot guarantee that the received ICMPv6 error
* packet included data beyond the inner ICMPv6 header, so we just
* assume that they are a match to the sent probe. (We shouldn't
* really be sending ICMPv6 error messages and expect ICMPv6 error
* responses that contain our ICMv6P error messages, should we?
* Well, even if we do, there is a good chance we are able to match
* those responses with the original probe) */
break;
case ICMPv6_PKTTOOBIG:
if(sent_icmp6->getMTU() != inner_icmp6->getMTU())
return false;
break;
case ICMPv6_PARAMPROB:
if(sent_icmp6->getPointer() != inner_icmp6->getPointer())
return false;
break;
case ICMPv6_ECHO:
case ICMPv6_ECHOREPLY:
if(sent_icmp6->getIdentifier() != inner_icmp6->getIdentifier())
return false;
if(sent_icmp6->getSequence() != inner_icmp6->getSequence())
return false;
break;
case ICMPv6_ROUTERSOLICIT:
/* Here we do not have much to compare, so we just test that
* the reserved field contains the same value, usually zero. */
if(sent_icmp6->getReserved()!=inner_icmp6->getReserved())
return false;
break;
case ICMPv6_ROUTERADVERT:
if(sent_icmp6->getCurrentHopLimit() != inner_icmp6->getCurrentHopLimit() )
return false;
if(sent_icmp6->getRouterLifetime() != inner_icmp6->getRouterLifetime() )
return false;
if(sent_icmp6->getReachableTime() != inner_icmp6->getReachableTime() )
return false;
if(sent_icmp6->getRetransmissionTimer() != inner_icmp6->getRetransmissionTimer() )
return false;
break;
case ICMPv6_REDIRECT:
if( memcmp(sent_icmp6->getTargetAddress().s6_addr, inner_icmp6->getTargetAddress().s6_addr, 16) !=0 )
return false;
if( memcmp(sent_icmp6->getDestinationAddress().s6_addr, inner_icmp6->getDestinationAddress().s6_addr, 16) !=0 )
return false;
break;
case ICMPv6_NGHBRSOLICIT:
case ICMPv6_NGHBRADVERT:
if( memcmp(sent_icmp6->getTargetAddress().s6_addr, inner_icmp6->getTargetAddress().s6_addr, 16) !=0 )
return false;
break;
case ICMPv6_RTRRENUM:
if(sent_icmp6->getSequence() != inner_icmp6->getSequence() )
return false;
if(sent_icmp6->getSegmentNumber() != inner_icmp6->getSegmentNumber() )
return false;
if(sent_icmp6->getMaxDelay() != inner_icmp6->getMaxDelay() )
return false;
if(sent_icmp6->getFlags() != inner_icmp6->getFlags() )
return false;
break;
case ICMPv6_NODEINFOQUERY:
case ICMPv6_NODEINFORESP:
if(sent_icmp6->getNodeInfoFlags() != inner_icmp6->getNodeInfoFlags() )
return false;
if(sent_icmp6->getNonce() != inner_icmp6->getNonce())
return false;
if(sent_icmp6->getQtype() != inner_icmp6->getQtype() )
return false;
break;
case ICMPv6_GRPMEMBQUERY:
case ICMPv6_GRPMEMBREP:
case ICMPv6_GRPMEMBRED:
case ICMPv6_INVNGHBRSOLICIT:
case ICMPv6_INVNGHBRADVERT:
case ICMPv6_MLDV2:
case ICMPv6_AGENTDISCOVREQ:
case ICMPv6_AGENTDISCOVREPLY:
case ICMPv6_MOBPREFIXSOLICIT:
case ICMPv6_MOBPREFIXADVERT:
case ICMPv6_CERTPATHSOLICIT:
case ICMPv6_CERTPATHADVERT:
case ICMPv6_EXPMOBILITY:
case ICMPv6_MRDADVERT:
case ICMPv6_MRDSOLICIT:
case ICMPv6_MRDTERMINATE:
case ICMPv6_FMIPV6:
/* All these types are not currently implemented but since the
* sent_icmp.getType() has returned such type, we assume
* that there is a match (don't return false here). */
break;
default:
/* Do not match ICMPv6 types we don't know about */
return false;
break;
}
}else if(sent_layer4->protocol_id()==HEADER_TYPE_ICMPv4){
ICMPv4Header *sent_icmp4=(ICMPv4Header *)sent_layer4;
ICMPv4Header *inner_icmp4=(ICMPv4Header *)inner_icmp;
switch(sent_icmp4->getType()){
case ICMP_ECHOREPLY:
case ICMP_ECHO:
case ICMP_TSTAMP:
case ICMP_TSTAMPREPLY:
case ICMP_INFO:
case ICMP_INFOREPLY:
case ICMP_MASK:
case ICMP_MASKREPLY:
case ICMP_DOMAINNAME:
case ICMP_DOMAINNAMEREPLY:
/* Check the message identifier and sequence number */
if(sent_icmp4->getIdentifier() != inner_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != inner_icmp4->getSequence())
return false;
break;
case ICMP_ROUTERADVERT:
/* Check only the main fields, no need to parse the whole list
* of addresses (maybe we didn't even get enough octets to
* check that). */
if(sent_icmp4->getNumAddresses() != inner_icmp4->getNumAddresses() )
return false;
if(sent_icmp4->getAddrEntrySize() != inner_icmp4->getAddrEntrySize())
return false;
if(sent_icmp4->getLifetime() != inner_icmp4->getLifetime() )
return false;
break;
case ICMP_ROUTERSOLICIT:
/* Here we do not have much to compare, so we just test that
* the reserved field contains the same value, usually zero. */
if(sent_icmp4->getReserved()!=inner_icmp4->getReserved())
return false;
break;
case ICMP_UNREACH:
case ICMP_SOURCEQUENCH:
case ICMP_TIMXCEED:
/* For these we cannot guarantee that the received ICMP error
* packet included data beyond the inner ICMP header, so we just
* assume that they are a match to the sent probe. (We shouldn't
* really be sending ICMP error messages and expect ICMP error
* responses that contain our ICMP error messages, should we?
* Well, even if we do, there is a good chance we are able to match
* those responses with the original probe) */
break;
case ICMP_REDIRECT:
if(sent_icmp4->getGatewayAddress().s_addr != inner_icmp4->getGatewayAddress().s_addr)
return false;
break;
case ICMP_PARAMPROB:
if(sent_icmp4->getParameterPointer() != inner_icmp4->getParameterPointer())
return false;
break;
case ICMP_TRACEROUTE:
if(sent_icmp4->getIDNumber() != inner_icmp4->getIDNumber())
return false;
if(sent_icmp4->getOutboundHopCount() != inner_icmp4->getOutboundHopCount())
return false;
if(sent_icmp4->getOutputLinkSpeed() != inner_icmp4->getOutputLinkSpeed() )
return false;
if(sent_icmp4->getOutputLinkMTU() != inner_icmp4->getOutputLinkMTU() )
return false;
break;
case ICMP_SECURITYFAILURES:
/* Check the pointer and the reserved field */
if(sent_icmp4->getSecurityPointer() != inner_icmp4->getSecurityPointer())
return false;
if(sent_icmp4->getReserved() != inner_icmp4->getReserved())
return false;
break;
default:
/* Do not match ICMP types we don't know about */
return false;
break;
}
}else{
return false; // Should never happen, though.
}
}else{ /* Received ICMP is informational. */
if(PKTPARSERDEBUG)printf("%s(): Received ICMP is an informational message.\n", __func__);
/* If we get here it means that we received an informational ICMPv6
* message. So now we have to check if the received message is the
* expected reply to the probe we sent (like an Echo reply for an Echo
* request, etc). */
if(sent_layer4->protocol_id()==HEADER_TYPE_ICMPv6 && rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv6){
ICMPv6Header *sent_icmp6=(ICMPv6Header *)sent_layer4;
ICMPv6Header *rcvd_icmp6=(ICMPv6Header *)rcvd_layer4;
switch( sent_icmp6->getType() ){
case ICMPv6_UNREACH:
case ICMPv6_TIMXCEED :
case ICMPv6_PKTTOOBIG:
case ICMPv6_PARAMPROB:
/* This should never happen. If we got here, the received type
* should be of an informational message, not an error message. */
printf("Error in isResponse()\n");
return false;
break;
case ICMPv6_ECHO:
/* For Echo request, we expect echo replies */
if(rcvd_icmp6->getType()!=ICMPv6_ECHOREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp6->getIdentifier() != rcvd_icmp6->getIdentifier())
return false;
if(sent_icmp6->getSequence() != rcvd_icmp6->getSequence())
return false;
break;
case ICMPv6_ECHOREPLY:
/* We don't expect replies to Echo replies */
return false;
break;
case ICMPv6_ROUTERSOLICIT:
/* For Router solicitations, we expect Router advertisements.
* We only check if the received ICMP is a router advert because
* there is nothing else that can be used to match the solicitation
* with the response. */
if(rcvd_icmp6->getType()!=ICMPv6_ROUTERADVERT)
return false;
break;
case ICMPv6_ROUTERADVERT:
/* We don't expect replies to router advertisements */
return false;
break;
case ICMPv6_REDIRECT:
/* We don't expect replies to Redirect messages */
return false;
break;
case ICMPv6_NGHBRSOLICIT:
if(PKTPARSERDEBUG)printf("%s(): Sent ICMP is an ICMPv6 Neighbor Solicitation.\n", __func__);
/* For Neighbor solicitations, we expect Neighbor advertisements
* with the "S" flag set (solicited flag) and the same address
* in the "TargetAddress" field. */
if(rcvd_icmp6->getType()!=ICMPv6_NGHBRADVERT)
return false;
if(PKTPARSERDEBUG)printf("%s(): Received ICMP is an ICMPv6 Neighbor Advertisement.\n", __func__);
if( !(rcvd_icmp6->getFlags() & 0x40) )
return false;
if( memcmp(sent_icmp6->getTargetAddress().s6_addr, rcvd_icmp6->getTargetAddress().s6_addr, 16) !=0 )
return false;
break;
case ICMPv6_NGHBRADVERT:
/* We don't expect replies to Neighbor advertisements */
return false;
break;
case ICMPv6_NODEINFOQUERY:
/* For Node Information Queries we expect Node Information
* responses with the same Nonce value that we used in the query. */
if(rcvd_icmp6->getType()!=ICMPv6_NODEINFORESP)
return false;
if(sent_icmp6->getNonce() != rcvd_icmp6->getNonce())
return false;
break;
case ICMPv6_NODEINFORESP:
/* Obviously, we do not expect responses to a response */
return false;
break;
case ICMPv6_INVNGHBRSOLICIT:
/* For Inverse Neighbor Discovery Solicitations we expect
* advertisements in response. We don't do any additional
* validation since any advert can be considered a response
* to the solicitation. */
if(rcvd_icmp6->getType()!=ICMPv6_INVNGHBRADVERT)
return false;
break;
case ICMPv6_INVNGHBRADVERT:
/* We don't expect responses to advertisements */
return false;
break;
case ICMPv6_RTRRENUM:
/* We don't expect specific responses to router renumbering
* messages. */
return false;
break;
case ICMPv6_GRPMEMBQUERY:
/* For Multicast Listener Discovery (MLD) queries, we expect
* either MLD Responses or MLD Done messages. We can't handle MLDv2
* yet, so we don't match it. TODO: Implement support for MLDv2 */
if(rcvd_icmp6->getType()!=ICMPv6_GRPMEMBREP && rcvd_icmp6->getType()!=ICMPv6_GRPMEMBRED)
return false;
/* Now we have two possibilities:
* a) The query is a "General Query" where the multicast address
* is set to zero.
* b) The query is a "Multicast-Address-Specific Query", where
* the multicast address field is set to an actual multicast
* address.
* In the first case, we match any query response to the request,
* as we don't have a multicast address to compare. In the second
* case, we verify that the target mcast address of the query
* matches the one in the response. */
struct in6_addr zeroaddr;
memset(&zeroaddr, 0, sizeof(struct in6_addr));
if( memcmp( sent_icmp6->getMulticastAddress().s6_addr, zeroaddr.s6_addr, 16) != 0 ){ /* Case B: */
if (memcmp( sent_icmp6->getMulticastAddress().s6_addr, rcvd_icmp6->getMulticastAddress().s6_addr, 16)!=0 )
return false;
}
break;
case ICMPv6_GRPMEMBREP:
case ICMPv6_GRPMEMBRED:
/* We don't expect responses to MLD reports */
return false;
break;
case ICMPv6_MLDV2:
case ICMPv6_AGENTDISCOVREQ:
case ICMPv6_AGENTDISCOVREPLY:
case ICMPv6_MOBPREFIXSOLICIT:
case ICMPv6_MOBPREFIXADVERT:
case ICMPv6_CERTPATHSOLICIT:
case ICMPv6_CERTPATHADVERT:
case ICMPv6_EXPMOBILITY:
case ICMPv6_MRDADVERT:
case ICMPv6_MRDSOLICIT:
case ICMPv6_MRDTERMINATE:
case ICMPv6_FMIPV6:
default:
/* Do not match ICMPv6 types we don't implement or know about *
* TODO: Implement these ICMPv6 types. */
return false;
break;
}
}else if(sent_layer4->protocol_id()==HEADER_TYPE_ICMPv4 && rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv4){
ICMPv4Header *sent_icmp4=(ICMPv4Header *)sent_layer4;
ICMPv4Header *rcvd_icmp4=(ICMPv4Header *)rcvd_layer4;
switch( sent_icmp4->getType() ){
case ICMP_ECHOREPLY:
/* We don't expect replies to Echo replies. */
return false;
break;
case ICMP_UNREACH:
case ICMP_SOURCEQUENCH:
case ICMP_REDIRECT:
case ICMP_TIMXCEED:
case ICMP_PARAMPROB:
/* Nodes are not supposed to respond to error messages, so
* we don't expect any replies. */
return false;
break;
case ICMP_ECHO:
/* For Echo request, we expect echo replies */
if(rcvd_icmp4->getType()!=ICMP_ECHOREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp4->getIdentifier() != rcvd_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != rcvd_icmp4->getSequence())
return false;
break;
case ICMP_ROUTERSOLICIT:
/* For ICMPv4 router solicitations, we expect router advertisements.
* We don't validate anything else because in IPv4 any advert that
* comes from the host we sent the solicitation to can be
* considered a response. */
if(rcvd_icmp4->getType()!=ICMP_ROUTERADVERT)
return false;
break;
case ICMP_ROUTERADVERT:
/* We don't expect responses to advertisements */
return false;
break;
case ICMP_TSTAMP:
/* For Timestampt requests, we expect timestamp replies */
if(rcvd_icmp4->getType()!=ICMP_TSTAMPREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp4->getIdentifier() != rcvd_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != rcvd_icmp4->getSequence())
return false;
break;
case ICMP_TSTAMPREPLY:
/* We do not expect responses to timestamp replies */
return false;
break;
case ICMP_INFO:
/* For Information requests, we expect Information replies */
if(rcvd_icmp4->getType()!=ICMP_INFOREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp4->getIdentifier() != rcvd_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != rcvd_icmp4->getSequence())
return false;
break;
case ICMP_INFOREPLY:
/* We do not expect responses to Information replies */
return false;
break;
case ICMP_MASK:
/* For Netmask requests, we expect Netmask replies */
if(rcvd_icmp4->getType()!=ICMP_MASKREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp4->getIdentifier() != rcvd_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != rcvd_icmp4->getSequence())
return false;
break;
case ICMP_MASKREPLY:
/* We do not expect responses to netmask replies */
return false;
break;
case ICMP_TRACEROUTE:
/* We don't expect replies to a traceroute message as it is
* sent as a response to an IP datagram that contains the
* IP traceroute option. Also, note that this function does
* not take this into account when processing IPv4 datagrams
* so if we receive an ICMP_TRACEROUTE we'll not be able
* to match it with the original IP datagram. */
return false;
break;
case ICMP_DOMAINNAME:
/* For Domain Name requests, we expect Domain Name replies */
if(rcvd_icmp4->getType()!=ICMP_DOMAINNAMEREPLY)
return false;
/* And we expect the ID and sequence number of the reply to
* match the ID and seq of the request. */
if(sent_icmp4->getIdentifier() != rcvd_icmp4->getIdentifier())
return false;
if(sent_icmp4->getSequence() != rcvd_icmp4->getSequence())
return false;
break;
case ICMP_DOMAINNAMEREPLY:
/* We do not expect replies to DN replies */
return false;
break;
case ICMP_SECURITYFAILURES:
/* Nodes are not expected to send replies to this message, as it
* is an ICMP error. */
return false;
break;
}
}else{
return false; // Should never happen
}
}
}else if(sent_layer4->protocol_id()==HEADER_TYPE_TCP || sent_layer4->protocol_id()==HEADER_TYPE_UDP){
if(PKTPARSERDEBUG)printf("%s(): Sent packet has a transport layer header.\n", __func__);
/* Both are TCP or both UDP */
if(sent_layer4->protocol_id()==rcvd_layer4->protocol_id()){
if(PKTPARSERDEBUG)printf("%s(): Received packet has a transport layer header too.\n", __func__);
/* Probe source port must equal response target port */
if( ((TransportLayerElement *)sent_layer4)->getSourcePort() != ((TransportLayerElement *)rcvd_layer4)->getDestinationPort() )
return false;
/* Probe target port must equal response source port */
if( ((TransportLayerElement *)rcvd_layer4)->getSourcePort() != ((TransportLayerElement *)sent_layer4)->getDestinationPort() )
return false;
/* If we sent TCP or UDP and got ICMP in response, we need to find a copy of our packet in the
* ICMP payload, providing it is an ICMP error message. */
}else if(rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv6 || rcvd_layer4->protocol_id()==HEADER_TYPE_ICMPv4){
if(PKTPARSERDEBUG)printf("%s(): Received packet does not have transport layer header but an ICMP header.\n", __func__);
/* We only expect ICMP error messages */
if( !(((ICMPHeader *)rcvd_layer4)->isError()) )
return false;
/* Let's validate the original header */
NetworkLayerElement *iperror=(NetworkLayerElement *)rcvd_layer4->getNextElement();
/* ICMP error message must contain the original datagram */
if(iperror==NULL)
return false;
/* The first header must be IP */
if(iperror->protocol_id()!=HEADER_TYPE_IPv6 && iperror->protocol_id()!=HEADER_TYPE_IPv4)
return false;
/* The IP version must match the probe's */
if(iperror->protocol_id()!=sent_ip->protocol_id())
return false;
/* Source and destination addresses must match the probe's (NATs are
* supposed to rewrite them too, so this should be OK) */
if( memcmp(iperror->getSourceAddress(), sent_ip->getSourceAddress(), iperror->getAddressLength())!=0 )
return false;
if( memcmp(iperror->getDestinationAddress(), sent_ip->getDestinationAddress(), iperror->getAddressLength())!=0 )
return false;
/* So far we've verified that the ICMP error contains an IP datagram that matches
* what we sent. Now, let's find the upper layer protocol (skip extension
* headers and the like until we find some transport protocol). */
TransportLayerElement *layer4error=(TransportLayerElement *)iperror->getNextElement();
while(layer4error!=NULL){
if(layer4error->protocol_id()==HEADER_TYPE_UDP || layer4error->protocol_id()==HEADER_TYPE_TCP ){
break;
}else{
layer4error=(TransportLayerElement *)layer4error->getNextElement();
}
}
if(layer4error==NULL)
return false;
/* Now make sure we see the same port numbers */
if( layer4error->getSourcePort() != ((TransportLayerElement *)sent_layer4)->getSourcePort() )
return false;
if( layer4error->getDestinationPort() != ((TransportLayerElement *)sent_layer4)->getDestinationPort() )
return false;
} else {
return false;
}
}else{
/* We sent a layer 4 other than ICMP, ICMPv6, TCP, or UDP. We return false
* as we cannot match responses for protocols we don't understand */
return false;
}
/* If we get there it means the packet passed all the tests. Return true
* to indicate that the packet is a response to this FPProbe. */
if(PKTPARSERDEBUG)printf("%s(): The received packet was successfully matched with the sent packet.\n", __func__);
return true;
}
/* Tries to find a transport layer header in the supplied chain of
* protocol headers. On success it returns a pointer to a PacketElement
* of one of these types:
*
* HEADER_TYPE_TCP
* HEADER_TYPE_UDP
* HEADER_TYPE_ICMPv4
* HEADER_TYPE_ICMPv6
* HEADER_TYPE_SCTP
* HEADER_TYPE_ARP
*
* It returns NULL if no transport layer header is found.
*
* Note that this method only understands IPv4, IPv6 (and its
* extension headers) and Ethernet. If the supplied packet contains
* something different before the tranport layer, NULL will be returned.
* */
PacketElement *PacketParser::find_transport_layer(PacketElement *chain){
PacketElement *aux=chain;
/* Traverse the chain of PacketElements */
while(aux!=NULL){
switch(aux->protocol_id()){
/* If we have a link or a network layer header, skip it. */
case HEADER_TYPE_IPv6_HOPOPT:
case HEADER_TYPE_IPv4:
case HEADER_TYPE_IPv6:
case HEADER_TYPE_IPv6_ROUTE:
case HEADER_TYPE_IPv6_FRAG:
case HEADER_TYPE_IPv6_NONXT:
case HEADER_TYPE_IPv6_OPTS:
case HEADER_TYPE_ETHERNET:
case HEADER_TYPE_IPv6_MOBILE:
aux=aux->getNextElement();
break;
/* If we found the transport layer, return it. */
case HEADER_TYPE_TCP:
case HEADER_TYPE_UDP:
case HEADER_TYPE_ICMPv4:
case HEADER_TYPE_ICMPv6:
case HEADER_TYPE_SCTP:
case HEADER_TYPE_ARP:
return aux;
break;
/* Otherwise, the packet contains headers we don't understand
* so we just return NULL to indicate that no valid transport
* layer was found. */
default:
return NULL;
break;
}
}
return NULL;
} /* End of find_transport_layer() */
|