File: sympy_conductance.cpp

package info (click to toggle)
nmodl 0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,016 kB
  • sloc: cpp: 28,492; javascript: 9,841; yacc: 2,804; python: 1,971; lex: 1,674; xml: 181; sh: 136; ansic: 37; makefile: 17; pascal: 7
file content (934 lines) | stat: -rw-r--r-- 30,917 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*************************************************************************
 * Copyright (C) 2018-2022 Blue Brain Project
 *
 * This file is part of NMODL distributed under the terms of the GNU
 * Lesser General Public License. See top-level LICENSE file for details.
 *************************************************************************/

#include <catch2/catch_test_macros.hpp>

#include "ast/program.hpp"
#include "parser/nmodl_driver.hpp"
#include "test/unit/utils/test_utils.hpp"
#include "visitors/checkparent_visitor.hpp"
#include "visitors/constant_folder_visitor.hpp"
#include "visitors/inline_visitor.hpp"
#include "visitors/local_var_rename_visitor.hpp"
#include "visitors/sympy_conductance_visitor.hpp"
#include "visitors/symtab_visitor.hpp"
#include "visitors/visitor_utils.hpp"

using namespace nmodl;
using namespace visitor;
using namespace test;
using namespace test_utils;

using ast::AstNodeType;
using nmodl::parser::NmodlDriver;


//=============================================================================
// SympyConductance visitor tests
//=============================================================================

std::string run_sympy_conductance_visitor(const std::string& text) {
    // construct AST from text
    NmodlDriver driver;
    const auto& ast = driver.parse_string(text);

    // construct symbol table from AST
    SymtabVisitor(false).visit_program(*ast);

    // run constant folding, inlining & local renaming first
    ConstantFolderVisitor().visit_program(*ast);
    InlineVisitor().visit_program(*ast);
    LocalVarRenameVisitor().visit_program(*ast);
    SymtabVisitor(true).visit_program(*ast);

    // run SympyConductance on AST
    SympyConductanceVisitor().visit_program(*ast);

    // check that, after visitor rearrangement, parents are still up-to-date
    CheckParentVisitor().check_ast(*ast);

    // run lookup visitor to extract results from AST
    // return BREAKPOINT block as JSON string
    return reindent_text(to_nmodl(collect_nodes(*ast, {AstNodeType::BREAKPOINT_BLOCK}).front()));
}

std::string breakpoint_to_nmodl(const std::string& text) {
    // construct AST from text
    NmodlDriver driver;
    const auto& ast = driver.parse_string(text);

    // construct symbol table from AST
    SymtabVisitor().visit_program(*ast);

    // run lookup visitor to extract results from AST
    // return BREAKPOINT block as JSON string
    return reindent_text(to_nmodl(collect_nodes(*ast, {AstNodeType::BREAKPOINT_BLOCK}).front()));
}

void run_sympy_conductance_passes(ast::Program& node) {
    // construct symbol table from AST
    SymtabVisitor v_symtab;
    v_symtab.visit_program(node);

    // run SympySolver on AST several times
    SympyConductanceVisitor v_sympy1;
    v_sympy1.visit_program(node);
    v_symtab.visit_program(node);
    v_sympy1.visit_program(node);
    v_symtab.visit_program(node);

    // also use a second instance of SympySolver
    SympyConductanceVisitor v_sympy2;
    v_sympy2.visit_program(node);
    v_symtab.visit_program(node);
    v_sympy1.visit_program(node);
    v_symtab.visit_program(node);
    v_sympy2.visit_program(node);
    v_symtab.visit_program(node);
}

SCENARIO("Addition of CONDUCTANCE using SympyConductance visitor", "[visitor][solver][sympy]") {
    // First set of test mod files below all based on:
    // nmodldb/models/db/bluebrain/CortexSimplified/mod/Ca.mod
    GIVEN("breakpoint block containing VERBATIM statement") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                RANGE gCabar, gCa, ica
            }
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                VERBATIM
                double z=0;
                ENDVERBATIM
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                VERBATIM
                double z=0;
                ENDVERBATIM
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }
        )";
        THEN("Do nothing") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("breakpoint block containing IF/ELSE block") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                RANGE gCabar, gCa, ica
            }
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                IF(gCabar<1){
                    gCa = gCabar*m*m*h
                    ica = gCa*(v-eca)
                } ELSE {
                    gCa = 0
                    ica = 0
                }
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                IF(gCabar<1){
                    gCa = gCabar*m*m*h
                    ica = gCa*(v-eca)
                } ELSE {
                    gCa = 0
                    ica = 0
                }
            }
        )";
        THEN("Do nothing") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("ion current, existing CONDUCTANCE hint & var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                RANGE gCabar, gCa, ica
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }
        )";
        THEN("Do nothing") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("ion current, no CONDUCTANCE hint, existing var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                RANGE gCabar, gCa, ica
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
            }
        )";
        THEN("Add CONDUCTANCE hint using existing var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("ion current, no CONDUCTANCE hint, no existing var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                RANGE gCabar, ica
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_ca_0
                CONDUCTANCE g_ca_0 USEION ca
                g_ca_0 = gCabar*h*pow(m, 2)
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
            }
        )";
        THEN("Add CONDUCTANCE hint with new local var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("2 ion currents, 1 CONDUCTANCE hint, 1 existing var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                USEION na READ ena WRITE ina
                RANGE gCabar, gNabar, ica, ina
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
                gNabar = 0.00005 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                ina (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_na_0
                CONDUCTANCE g_na_0 USEION na
                g_na_0 = gNabar*h*m
                CONDUCTANCE gCa USEION ca
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }
        )";
        THEN("Add 1 CONDUCTANCE hint with new local var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("2 ion currents, no CONDUCTANCE hints, 1 existing var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                USEION na READ ena WRITE ina
                RANGE gCabar, gNabar, ica, ina
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
                gNabar = 0.00005 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                ina (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_na_0
                CONDUCTANCE g_na_0 USEION na
                CONDUCTANCE gCa USEION ca
                g_na_0 = gNabar*h*m
                SOLVE states METHOD cnexp
                gCa = gCabar*m*m*h
                ica = gCa*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }
        )";
        THEN("Add 2 CONDUCTANCE hints, 1 with existing var, 1 with new local var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("2 ion currents, no CONDUCTANCE hints, no existing vars") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                USEION na READ ena WRITE ina
                RANGE gCabar, gNabar, ica, ina
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
                gNabar = 0.00005 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                ina (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_ca_0, g_na_0
                CONDUCTANCE g_na_0 USEION na
                CONDUCTANCE g_ca_0 USEION ca
                g_ca_0 = gCabar*h*pow(m, 2)
                g_na_0 = gNabar*h*m
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
                ina = (gNabar*m*h)*(v-eca)
            }
        )";
        THEN("Add 2 CONDUCTANCE hints with 2 new local vars") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("1 ion current, 1 nonspecific current, no CONDUCTANCE hints, no existing vars") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                NONSPECIFIC_CURRENT ihcn
                RANGE gCabar, ica
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                ihcn (mA/cm2)
                gCa (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
                ihcn = (0.1235*m*h)*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_ca_0, g__0
                CONDUCTANCE g__0
                CONDUCTANCE g_ca_0 USEION ca
                g_ca_0 = gCabar*h*pow(m, 2)
                g__0 = 0.1235*h*m
                SOLVE states METHOD cnexp
                ica = (gCabar*m*m*h)*(v-eca)
                ihcn = (0.1235*m*h)*(v-eca)
            }
        )";
        THEN("Add 2 CONDUCTANCE hints with 2 new local vars") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    GIVEN("1 ion current, 1 nonspecific current, no CONDUCTANCE hints, 1 existing var") {
        std::string nmodl_text = R"(
            NEURON  {
                SUFFIX Ca
                USEION ca READ eca WRITE ica
                NONSPECIFIC_CURRENT ihcn
                RANGE gCabar, ica, gihcn
            }

            UNITS   {
                (S) = (siemens)
                (mV) = (millivolt)
                (mA) = (milliamp)
            }

            PARAMETER   {
                gCabar = 0.00001 (S/cm2)
            }

            ASSIGNED    {
                v   (mV)
                eca (mV)
                ica (mA/cm2)
                ihcn (mA/cm2)
                gCa (S/cm2)
                gihcn (S/cm2)
                mInf
                mTau
                mAlpha
                mBeta
                hInf
                hTau
                hAlpha
                hBeta
            }

            STATE   {
                m
                h
            }

            BREAKPOINT  {
                SOLVE states METHOD cnexp
                gihcn = 0.1235*m*h
                ica = (gCabar*m*m*h)*(v-eca)
                ihcn = gihcn*(v-eca)
            }

            DERIVATIVE states   {
                m' = (mInf-m)/mTau
                h' = (hInf-h)/hTau
            }

            INITIAL{
                m = mInf
                h = hInf
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT  {
                LOCAL g_ca_0
                CONDUCTANCE gihcn
                CONDUCTANCE g_ca_0 USEION ca
                g_ca_0 = gCabar*h*pow(m, 2)
                SOLVE states METHOD cnexp
                gihcn = 0.1235*m*h
                ica = (gCabar*m*m*h)*(v-eca)
                ihcn = gihcn*(v-eca)
            }
        )";
        THEN("Add 2 CONDUCTANCE hints, 1 using existing var, 1 with new local var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    // based on bluebrain/CortextPlastic/mod/ProbAMPANMDA.mod
    GIVEN(
        "2 ion currents, 1 nonspecific current, no CONDUCTANCE hints, indirect relation between "
        "eqns") {
        std::string nmodl_text = R"(
            NEURON {
                THREADSAFE
                    POINT_PROCESS ProbAMPANMDA
                    RANGE tau_r_AMPA, tau_d_AMPA, tau_r_NMDA, tau_d_NMDA
                    RANGE Use, u, Dep, Fac, u0, mg, NMDA_ratio
                    RANGE i, i_AMPA, i_NMDA, g_AMPA, g_NMDA, g, e
                    NONSPECIFIC_CURRENT i, i_AMPA,i_NMDA
                    POINTER rng
                    RANGE synapseID, verboseLevel
            }
            PARAMETER {
                    tau_r_AMPA = 0.2   (ms)  : dual-exponential conductance profile
                    tau_d_AMPA = 1.7    (ms)  : IMPORTANT: tau_r < tau_d
                    tau_r_NMDA = 0.29   (ms) : dual-exponential conductance profile
                    tau_d_NMDA = 43     (ms) : IMPORTANT: tau_r < tau_d
                    Use = 1.0   (1)   : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values)
                    Dep = 100   (ms)  : relaxation time constant from depression
                    Fac = 10   (ms)  :  relaxation time constant from facilitation
                    e = 0     (mV)  : AMPA and NMDA reversal potential
                    mg = 1   (mM)  : initial concentration of mg2+
                    mggate
                    gmax = .001 (uS) : weight conversion factor (from nS to uS)
                    u0 = 0 :initial value of u, which is the running value of Use
                    NMDA_ratio = 0.71 (1) : The ratio of NMDA to AMPA
                    synapseID = 0
                    verboseLevel = 0
            }
            ASSIGNED {
                    v (mV)
                    i (nA)
                    i_AMPA (nA)
                    i_NMDA (nA)
                    g_AMPA (uS)
                    g_NMDA (uS)
                    g (uS)
                    factor_AMPA
                    factor_NMDA
                    rng
            }
            STATE {
                    A_AMPA       : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_r_AMPA
                    B_AMPA       : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_d_AMPA
                    A_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA
                    B_NMDA       : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA
            }
            BREAKPOINT {
                    SOLVE state METHOD cnexp
                    mggate = 1.2
                    g_AMPA = gmax*(B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA
                    g_NMDA = gmax*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics
                    g = g_AMPA + g_NMDA
                    i_AMPA = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal
                    i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal
                    i = i_AMPA + i_NMDA
            }
            DERIVATIVE state{
                    A_AMPA' = -A_AMPA/tau_r_AMPA
                    B_AMPA' = -B_AMPA/tau_d_AMPA
                    A_NMDA' = -A_NMDA/tau_r_NMDA
                    B_NMDA' = -B_NMDA/tau_d_NMDA
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT {
                    CONDUCTANCE g
                    CONDUCTANCE g_NMDA
                    CONDUCTANCE g_AMPA
                    SOLVE state METHOD cnexp
                    mggate = 1.2
                    g_AMPA = gmax*(B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA
                    g_NMDA = gmax*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics
                    g = g_AMPA + g_NMDA
                    i_AMPA = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal
                    i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal
                    i = i_AMPA + i_NMDA
            }
        )";
        THEN("Add 3 CONDUCTANCE hints, using existing vars") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
    // based on neurodamus/bbp/lib/modlib/GluSynapse.mod
    GIVEN("1 nonspecific current, no CONDUCTANCE hints, many eqs & a function involved") {
        std::string nmodl_text = R"(
            NEURON {
                GLOBAL tau_r_AMPA, E_AMPA
                RANGE tau_d_AMPA, gmax_AMPA
                RANGE g_AMPA
                GLOBAL tau_r_NMDA, tau_d_NMDA, E_NMDA
                RANGE g_NMDA
                RANGE Use, Dep, Fac, Nrrp, u
                RANGE tsyn, unoccupied, occupied
                RANGE ica_NMDA
                RANGE volume_CR
                GLOBAL ljp_VDCC, vhm_VDCC, km_VDCC, mtau_VDCC, vhh_VDCC, kh_VDCC, htau_VDCC
                RANGE gca_bar_VDCC, ica_VDCC
                GLOBAL gamma_ca_CR, tau_ca_CR, min_ca_CR, cao_CR
                GLOBAL tau_GB, gamma_d_GB, gamma_p_GB, rho_star_GB, tau_Use_GB, tau_effca_GB
                RANGE theta_d_GB, theta_p_GB
                RANGE rho0_GB
                RANGE enable_GB, depress_GB, potentiate_GB
                RANGE Use_d_GB, Use_p_GB
                GLOBAL p_gen_RW, p_elim0_RW, p_elim1_RW
                RANGE enable_RW, synstate_RW
                GLOBAL mg, scale_mg, slope_mg
                RANGE vsyn, NMDA_ratio, synapseID, selected_for_report, verbose
                NONSPECIFIC_CURRENT i
            }
            UNITS {
                (nA)    = (nanoamp)
                (mV)    = (millivolt)
                (uS)    = (microsiemens)
                (nS)    = (nanosiemens)
                (pS)    = (picosiemens)
                (umho)  = (micromho)
                (um)    = (micrometers)
                (mM)    = (milli/liter)
                (uM)    = (micro/liter)
                FARADAY = (faraday) (coulomb)
                PI      = (pi)      (1)
                R       = (k-mole)  (joule/degC)
            }
            ASSIGNED {
                g_AMPA          (uS)
                g_NMDA          (uS)
                ica_NMDA        (nA)
                ica_VDCC        (nA)
                depress_GB      (1)
                potentiate_GB   (1)
                v               (mV)
                vsyn            (mV)
                i               (nA)
            }
            FUNCTION nernst(ci(mM), co(mM), z) (mV) {
                nernst = (1000) * R * (celsius + 273.15) / (z*FARADAY) * log(co/ci)
            }
            BREAKPOINT {
                LOCAL Eca_syn, mggate, i_AMPA, gmax_NMDA, i_NMDA, Pf_NMDA, gca_bar_abs_VDCC, gca_VDCC
                g_AMPA = (1e-3)*gmax_AMPA*(B_AMPA-A_AMPA)
                i_AMPA = g_AMPA*(v-E_AMPA)
                gmax_NMDA = gmax_AMPA*NMDA_ratio
                mggate = 1 / (1 + exp(slope_mg * -(v)) * (mg / scale_mg))
                g_NMDA = (1e-3)*gmax_NMDA*mggate*(B_NMDA-A_NMDA)
                i_NMDA = g_NMDA*(v-E_NMDA)
                Pf_NMDA  = (4*cao_CR) / (4*cao_CR + (1/1.38) * 120 (mM)) * 0.6
                ica_NMDA = Pf_NMDA*g_NMDA*(v-40.0)
                gca_bar_abs_VDCC = gca_bar_VDCC * 4(um2)*PI*(3(1/um3)/4*volume_CR*1/PI)^(2/3)
                gca_VDCC = (1e-3) * gca_bar_abs_VDCC * m_VDCC * m_VDCC * h_VDCC
                Eca_syn = FARADAY*nernst(cai_CR, cao_CR, 2)
                ica_VDCC = gca_VDCC*(v-Eca_syn)
                vsyn = v
                i = i_AMPA + i_NMDA + ica_VDCC
            }
        )";
        std::string breakpoint_text = R"(
            BREAKPOINT {
                LOCAL Eca_syn, mggate, i_AMPA, gmax_NMDA, i_NMDA, Pf_NMDA, gca_bar_abs_VDCC, gca_VDCC, nernst_in_0, g__0
                CONDUCTANCE g__0
                g__0 = (0.001*gmax_NMDA*mg*scale_mg*slope_mg*(A_NMDA-B_NMDA)*(E_NMDA-v)*exp(slope_mg*v)-0.001*gmax_NMDA*scale_mg*(A_NMDA-B_NMDA)*(mg+scale_mg*exp(slope_mg*v))*exp(slope_mg*v)+(g_AMPA+gca_VDCC)*pow(mg+scale_mg*exp(slope_mg*v), 2))/pow(mg+scale_mg*exp(slope_mg*v), 2)
                g_AMPA = 1e-3*gmax_AMPA*(B_AMPA-A_AMPA)
                i_AMPA = g_AMPA*(v-E_AMPA)
                gmax_NMDA = gmax_AMPA*NMDA_ratio
                mggate = 1/(1+exp(slope_mg*-v)*(mg/scale_mg))
                g_NMDA = 1e-3*gmax_NMDA*mggate*(B_NMDA-A_NMDA)
                i_NMDA = g_NMDA*(v-E_NMDA)
                Pf_NMDA = (4*cao_CR)/(4*cao_CR+0.7246376811594204*120(mM))*0.6
                ica_NMDA = Pf_NMDA*g_NMDA*(v-40.0)
                gca_bar_abs_VDCC = gca_bar_VDCC*4(um2)*PI*(3(1/um3)/4*volume_CR*1/PI)^0.6666666666666666
                gca_VDCC = 1e-3*gca_bar_abs_VDCC*m_VDCC*m_VDCC*h_VDCC
                {
                    LOCAL ci_in_0, co_in_0, z_in_0
                    ci_in_0 = cai_CR
                    co_in_0 = cao_CR
                    z_in_0 = 2
                    nernst_in_0 = 1000*R*(celsius+273.15)/(z_in_0*FARADAY)*log(co_in_0/ci_in_0)
                }
                Eca_syn = FARADAY*nernst_in_0
                ica_VDCC = gca_VDCC*(v-Eca_syn)
                vsyn = v
                i = i_AMPA+i_NMDA+ica_VDCC
            }
        )";
        THEN("Add 1 CONDUCTANCE hint using new var") {
            auto result = run_sympy_conductance_visitor(nmodl_text);
            REQUIRE(result == breakpoint_to_nmodl(breakpoint_text));
        }
    }
}