File: units.cpp

package info (click to toggle)
nmodl 0.6-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,016 kB
  • sloc: cpp: 28,492; javascript: 9,841; yacc: 2,804; python: 1,971; lex: 1,674; xml: 181; sh: 136; ansic: 37; makefile: 17; pascal: 7
file content (258 lines) | stat: -rw-r--r-- 9,668 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*************************************************************************
 * Copyright (C) 2018-2022 Blue Brain Project
 *
 * This file is part of NMODL distributed under the terms of the GNU
 * Lesser General Public License. See top-level LICENSE file for details.
 *************************************************************************/

#include <catch2/catch_test_macros.hpp>
#include <fmt/format.h>

#include "ast/double.hpp"
#include "ast/factor_def.hpp"
#include "ast/program.hpp"
#include "parser/nmodl_driver.hpp"
#include "src/config/config.h"
#include "test/unit/utils/nmodl_constructs.hpp"
#include "test/unit/utils/test_utils.hpp"
#include "visitors/checkparent_visitor.hpp"
#include "visitors/units_visitor.hpp"

using namespace nmodl;
using namespace visitor;
using namespace test;
using namespace test_utils;

using nmodl::parser::NmodlDriver;

//=============================================================================
// Unit visitor tests
//=============================================================================

std::tuple<std::shared_ptr<ast::Program>, std::shared_ptr<units::UnitTable>> run_units_visitor(
    const std::string& text) {
    NmodlDriver driver;
    driver.parse_string(text);
    const auto& ast = driver.get_ast();

    // Parse nrnunits.lib file and the UNITS block of the mod file
    const std::string units_lib_path(NrnUnitsLib::get_path());
    UnitsVisitor units_visitor = UnitsVisitor(units_lib_path);

    units_visitor.visit_program(*ast);

    // Keep the UnitTable created from parsing unit file and UNITS
    // block of the mod file
    parser::UnitDriver units_driver = units_visitor.get_unit_driver();
    std::shared_ptr<units::UnitTable> unit_table = units_driver.table;

    // check that, after visitor rearrangement, parents are still up-to-date
    CheckParentVisitor().check_ast(*ast);

    return {ast, unit_table};
}


/**
 * @brief Returns all the \c UnitDef s of the \c ast::Program
 *
 * Visit AST to find all the ast::UnitDef nodes to print their
 * unit names, factors and dimensions as they are calculated in
 * the units::UnitTable
 * The \c UnitDef s are printed in the format:
 * \code
 * <unit_name> <unit_value>: <dimensions>
 * \endcode
 *
 * If the unit is constant then instead of the dimensions we print \c constant
 *
 * @arg ast \c ast::Program to look for \c UnitDef s
 * @arg unit_table \c units::UnitTable to look for the definitions of the units
 *
 * @return std::string Unit definitions
 */
std::string get_unit_definitions(const ast::Program& ast, const units::UnitTable& unit_table) {
    std::stringstream ss;
    const auto& unit_defs = collect_nodes(ast, {ast::AstNodeType::UNIT_DEF});

    for (const auto& unit_def: unit_defs) {
        auto unit_name = unit_def->get_node_name();
        unit_name.erase(remove_if(unit_name.begin(), unit_name.end(), isspace), unit_name.end());
        auto unit = unit_table.get_unit(unit_name);
        ss << fmt::format("{} {:g}:", unit_name, unit->get_factor());
        // Dimensions of the unit are printed to check that the units are successfully
        // parsed to the units::UnitTable
        int dimension_id = 0;
        auto constant = true;
        for (const auto& dimension: unit->get_dimensions()) {
            if (dimension != 0) {
                constant = false;
                ss << ' ' << unit_table.get_base_unit_name(dimension_id) << dimension;
            }
            dimension_id++;
        }
        if (constant) {
            ss << " constant";
        }
        ss << '\n';
    }
    return ss.str();
}

/**
 * @brief Returns all the \c FactorDef s of the \c ast::Program
 *
 * Visit AST to find all the ast::FactorDef nodes to print their
 * unit names and factors as they are calculated to be printed
 * to the generated .cpp file
 * The \c FactorDef s are printed in the format:
 * \code
 * <unit_name> <unit_value>
 * \endcode
 *
 * @arg ast \c ast::Program to look for \c FactorDef s
 *
 * @return std::string Factor definitions
 */
std::string get_factor_definitions(const ast::Program& ast) {
    std::stringstream ss;
    const auto& factor_defs = collect_nodes(ast, {ast::AstNodeType::FACTOR_DEF});
    for (const auto& factor_def: factor_defs) {
        const auto& factor_def_cast = std::dynamic_pointer_cast<const ast::FactorDef>(factor_def);
        ss << fmt::format("{} {}\n",
                          factor_def_cast->get_node_name(),
                          factor_def_cast->get_value()->get_value());
    }
    return ss.str();
}

SCENARIO("Parse UNITS block of mod files using Units Visitor", "[visitor][units]") {
    GIVEN("UNITS block with different cases of UNITS definitions") {
        static const std::string nmodl_text = R"(
            UNITS {
                (nA)    = (nanoamp)
                (mA)    = (milliamp)
                (mV)    = (millivolt)
                (uS)    = (microsiemens)
                (nS)    = (nanosiemens)
                (pS)    = (picosiemens)
                (umho)  = (micromho)
                (um)    = (micrometers)
                (mM)    = (milli/liter)
                (uM)    = (micro/liter)
                (msM) = (ms mM)
                (fAm) = (femto amp meter)
                (newmol) = (1)
                (M) = (1/liter)
                (uM1) = (micro M)
                (mA/cm2) = (nanoamp/cm2)
                (molar) = (1 / liter)
                (S ) = (siemens)
                (mse-1) = (1/millisec)
                (um3) = (liter/1e15)
                (molar1) = (/liter)
                (newdegK) = (degC)
                FARADAY1 = (faraday) (coulomb)
                FARADAY2 = (faraday) (kilocoulombs)
                FARADAY3 = (faraday) (10000 coulomb)
                pi      = (pi)      (1)
                R1       = (k-mole)  (joule/degC)
                R2 = 8.314 (volt-coul/degC)
                R3 = (mole k) (mV-coulomb/degC)
                R4 = 8.314 (volt-coul/degK)
                R5 = 8.314500000000001 (volt coul/kelvin)
                dummy1  = 123.45    (m 1/sec2)
                dummy2  = 123.45e3  (millimeters/sec2)
                dummy3  = 12345e-2  (m/sec2)
                KTOMV = 0.0853 (mV/degC)
                B = 0.26 (mM-cm2/mA-ms)
                TEMP = 25 (degC)
                toyfuzz = (1) (volt)
                numbertwo = 2 (1)
                oldJ = (R-mole) (1) : compute oldJ based on the value of R which is registered in the UnitTable
                R = 8 (joule/degC) : define a new value for R that should be visible only in the mod file
                J = (R-mole) (1) : recalculate J. It's value should be the same as oldJ because R shouldn't change in the UnitTable
                (myR) = (8 joule/degC) : Define my own R and mole and compute myRnew and myJ based on them
                (mymole) = (6+23)
                myRnew = (myR) (1)
                myJ = (myR-mymole) (1) 
            }
        )";

        static const std::string unit_definitions = R"(
        nA 1e-09: sec-1 coul1
        mA 0.001: sec-1 coul1
        mV 0.001: m2 kg1 sec-2 coul-1
        uS 1e-06: m-2 kg-1 sec1 coul2
        nS 1e-09: m-2 kg-1 sec1 coul2
        pS 1e-12: m-2 kg-1 sec1 coul2
        umho 1e-06: m-2 kg-1 sec1 coul2
        um 1e-06: m1
        mM 1: m-3
        uM 0.001: m-3
        msM 0.001: m-3 sec1
        fAm 1e-15: m1 sec-1 coul1
        newmol 1: constant
        M 1000: m-3
        uM1 0.001: m-3
        mA/cm2 1e-05: m-2 sec-1 coul1
        molar 1000: m-3
        S 1: m-2 kg-1 sec1 coul2
        mse-1 1000: sec-1
        um3 0.001: m3
        molar1 1000: m-3
        newdegK 1: K1
        myR 8: m2 kg1 sec-2 K-1
        mymole 6e+23: constant
        )";

        static const std::string factor_definitions = R"(
        FARADAY1 0x1.78e555060882cp+16
        FARADAY2 0x1.81f0fae775425p+6
        FARADAY3 0x1.34c0c8b92a9b7p+3
        pi 0x1.921fb54442d18p+1
        R1 0x1.0a1013e8990bep+3
        R2 8.314
        R3 0x1.03d3b37125759p+13
        R4 8.314
        R5 8.314500000000001
        dummy1 123.45
        dummy2 123.45e3
        dummy3 12345e-2
        KTOMV 0.0853
        B 0.26
        TEMP 25
        toyfuzz 1
        numbertwo 2
        oldJ 0x1.0912acba81b67p+82
        R 8
        J 0x1.0912acba81b67p+82
        myRnew 8
        myJ 0x1.fc3842bd1f072p+81
        )";

        THEN("Print the units that were added") {
            const std::string input(reindent_text(nmodl_text));
            auto expected_result_unit_definitions = reindent_text(unit_definitions);
            auto expected_result_factor_definitions = reindent_text(factor_definitions);
            const auto& [ast, unit_table] = run_units_visitor(input);
            const auto& generated_unit_definitions = get_unit_definitions(*ast, *unit_table);
            const auto& generated_factor_definitions = get_factor_definitions(*ast);
            auto reindented_result_unit_definitions = reindent_text(generated_unit_definitions);
            auto reindented_result_factor_definitions = reindent_text(generated_factor_definitions);
            REQUIRE(reindented_result_unit_definitions == expected_result_unit_definitions);
            REQUIRE(reindented_result_factor_definitions == expected_result_factor_definitions);
        }
    }
    GIVEN("UNITS block with Unit definition which is already defined") {
        static const std::string nmodl_text = R"(
            UNITS {
                (R) = (8 joule/degC)
            }
        )";
        THEN("Throw redefinition exception") {
            const std::string input(reindent_text(nmodl_text));
            REQUIRE_THROWS(run_units_visitor(input));
        }
    }
}