1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/*************************************************************************
* Copyright (C) 2018-2022 Blue Brain Project
*
* This file is part of NMODL distributed under the terms of the GNU
* Lesser General Public License. See top-level LICENSE file for details.
*************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <fmt/format.h>
#include "ast/double.hpp"
#include "ast/factor_def.hpp"
#include "ast/program.hpp"
#include "parser/nmodl_driver.hpp"
#include "src/config/config.h"
#include "test/unit/utils/nmodl_constructs.hpp"
#include "test/unit/utils/test_utils.hpp"
#include "visitors/checkparent_visitor.hpp"
#include "visitors/units_visitor.hpp"
using namespace nmodl;
using namespace visitor;
using namespace test;
using namespace test_utils;
using nmodl::parser::NmodlDriver;
//=============================================================================
// Unit visitor tests
//=============================================================================
std::tuple<std::shared_ptr<ast::Program>, std::shared_ptr<units::UnitTable>> run_units_visitor(
const std::string& text) {
NmodlDriver driver;
driver.parse_string(text);
const auto& ast = driver.get_ast();
// Parse nrnunits.lib file and the UNITS block of the mod file
const std::string units_lib_path(NrnUnitsLib::get_path());
UnitsVisitor units_visitor = UnitsVisitor(units_lib_path);
units_visitor.visit_program(*ast);
// Keep the UnitTable created from parsing unit file and UNITS
// block of the mod file
parser::UnitDriver units_driver = units_visitor.get_unit_driver();
std::shared_ptr<units::UnitTable> unit_table = units_driver.table;
// check that, after visitor rearrangement, parents are still up-to-date
CheckParentVisitor().check_ast(*ast);
return {ast, unit_table};
}
/**
* @brief Returns all the \c UnitDef s of the \c ast::Program
*
* Visit AST to find all the ast::UnitDef nodes to print their
* unit names, factors and dimensions as they are calculated in
* the units::UnitTable
* The \c UnitDef s are printed in the format:
* \code
* <unit_name> <unit_value>: <dimensions>
* \endcode
*
* If the unit is constant then instead of the dimensions we print \c constant
*
* @arg ast \c ast::Program to look for \c UnitDef s
* @arg unit_table \c units::UnitTable to look for the definitions of the units
*
* @return std::string Unit definitions
*/
std::string get_unit_definitions(const ast::Program& ast, const units::UnitTable& unit_table) {
std::stringstream ss;
const auto& unit_defs = collect_nodes(ast, {ast::AstNodeType::UNIT_DEF});
for (const auto& unit_def: unit_defs) {
auto unit_name = unit_def->get_node_name();
unit_name.erase(remove_if(unit_name.begin(), unit_name.end(), isspace), unit_name.end());
auto unit = unit_table.get_unit(unit_name);
ss << fmt::format("{} {:g}:", unit_name, unit->get_factor());
// Dimensions of the unit are printed to check that the units are successfully
// parsed to the units::UnitTable
int dimension_id = 0;
auto constant = true;
for (const auto& dimension: unit->get_dimensions()) {
if (dimension != 0) {
constant = false;
ss << ' ' << unit_table.get_base_unit_name(dimension_id) << dimension;
}
dimension_id++;
}
if (constant) {
ss << " constant";
}
ss << '\n';
}
return ss.str();
}
/**
* @brief Returns all the \c FactorDef s of the \c ast::Program
*
* Visit AST to find all the ast::FactorDef nodes to print their
* unit names and factors as they are calculated to be printed
* to the generated .cpp file
* The \c FactorDef s are printed in the format:
* \code
* <unit_name> <unit_value>
* \endcode
*
* @arg ast \c ast::Program to look for \c FactorDef s
*
* @return std::string Factor definitions
*/
std::string get_factor_definitions(const ast::Program& ast) {
std::stringstream ss;
const auto& factor_defs = collect_nodes(ast, {ast::AstNodeType::FACTOR_DEF});
for (const auto& factor_def: factor_defs) {
const auto& factor_def_cast = std::dynamic_pointer_cast<const ast::FactorDef>(factor_def);
ss << fmt::format("{} {}\n",
factor_def_cast->get_node_name(),
factor_def_cast->get_value()->get_value());
}
return ss.str();
}
SCENARIO("Parse UNITS block of mod files using Units Visitor", "[visitor][units]") {
GIVEN("UNITS block with different cases of UNITS definitions") {
static const std::string nmodl_text = R"(
UNITS {
(nA) = (nanoamp)
(mA) = (milliamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(umho) = (micromho)
(um) = (micrometers)
(mM) = (milli/liter)
(uM) = (micro/liter)
(msM) = (ms mM)
(fAm) = (femto amp meter)
(newmol) = (1)
(M) = (1/liter)
(uM1) = (micro M)
(mA/cm2) = (nanoamp/cm2)
(molar) = (1 / liter)
(S ) = (siemens)
(mse-1) = (1/millisec)
(um3) = (liter/1e15)
(molar1) = (/liter)
(newdegK) = (degC)
FARADAY1 = (faraday) (coulomb)
FARADAY2 = (faraday) (kilocoulombs)
FARADAY3 = (faraday) (10000 coulomb)
pi = (pi) (1)
R1 = (k-mole) (joule/degC)
R2 = 8.314 (volt-coul/degC)
R3 = (mole k) (mV-coulomb/degC)
R4 = 8.314 (volt-coul/degK)
R5 = 8.314500000000001 (volt coul/kelvin)
dummy1 = 123.45 (m 1/sec2)
dummy2 = 123.45e3 (millimeters/sec2)
dummy3 = 12345e-2 (m/sec2)
KTOMV = 0.0853 (mV/degC)
B = 0.26 (mM-cm2/mA-ms)
TEMP = 25 (degC)
toyfuzz = (1) (volt)
numbertwo = 2 (1)
oldJ = (R-mole) (1) : compute oldJ based on the value of R which is registered in the UnitTable
R = 8 (joule/degC) : define a new value for R that should be visible only in the mod file
J = (R-mole) (1) : recalculate J. It's value should be the same as oldJ because R shouldn't change in the UnitTable
(myR) = (8 joule/degC) : Define my own R and mole and compute myRnew and myJ based on them
(mymole) = (6+23)
myRnew = (myR) (1)
myJ = (myR-mymole) (1)
}
)";
static const std::string unit_definitions = R"(
nA 1e-09: sec-1 coul1
mA 0.001: sec-1 coul1
mV 0.001: m2 kg1 sec-2 coul-1
uS 1e-06: m-2 kg-1 sec1 coul2
nS 1e-09: m-2 kg-1 sec1 coul2
pS 1e-12: m-2 kg-1 sec1 coul2
umho 1e-06: m-2 kg-1 sec1 coul2
um 1e-06: m1
mM 1: m-3
uM 0.001: m-3
msM 0.001: m-3 sec1
fAm 1e-15: m1 sec-1 coul1
newmol 1: constant
M 1000: m-3
uM1 0.001: m-3
mA/cm2 1e-05: m-2 sec-1 coul1
molar 1000: m-3
S 1: m-2 kg-1 sec1 coul2
mse-1 1000: sec-1
um3 0.001: m3
molar1 1000: m-3
newdegK 1: K1
myR 8: m2 kg1 sec-2 K-1
mymole 6e+23: constant
)";
static const std::string factor_definitions = R"(
FARADAY1 0x1.78e555060882cp+16
FARADAY2 0x1.81f0fae775425p+6
FARADAY3 0x1.34c0c8b92a9b7p+3
pi 0x1.921fb54442d18p+1
R1 0x1.0a1013e8990bep+3
R2 8.314
R3 0x1.03d3b37125759p+13
R4 8.314
R5 8.314500000000001
dummy1 123.45
dummy2 123.45e3
dummy3 12345e-2
KTOMV 0.0853
B 0.26
TEMP 25
toyfuzz 1
numbertwo 2
oldJ 0x1.0912acba81b67p+82
R 8
J 0x1.0912acba81b67p+82
myRnew 8
myJ 0x1.fc3842bd1f072p+81
)";
THEN("Print the units that were added") {
const std::string input(reindent_text(nmodl_text));
auto expected_result_unit_definitions = reindent_text(unit_definitions);
auto expected_result_factor_definitions = reindent_text(factor_definitions);
const auto& [ast, unit_table] = run_units_visitor(input);
const auto& generated_unit_definitions = get_unit_definitions(*ast, *unit_table);
const auto& generated_factor_definitions = get_factor_definitions(*ast);
auto reindented_result_unit_definitions = reindent_text(generated_unit_definitions);
auto reindented_result_factor_definitions = reindent_text(generated_factor_definitions);
REQUIRE(reindented_result_unit_definitions == expected_result_unit_definitions);
REQUIRE(reindented_result_factor_definitions == expected_result_factor_definitions);
}
}
GIVEN("UNITS block with Unit definition which is already defined") {
static const std::string nmodl_text = R"(
UNITS {
(R) = (8 joule/degC)
}
)";
THEN("Throw redefinition exception") {
const std::string input(reindent_text(nmodl_text));
REQUIRE_THROWS(run_units_visitor(input));
}
}
}
|