1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
package com.boronine.husl;
public class HuslConverter {
/* package */ static float PI = 3.1415926535897932384626433832795f;
// Used for rgb ↔ xyz conversions.
/* package */ static float m[][] = {{3.2406f, -1.5372f, -0.4986f},
{-0.9689f, 1.8758f, 0.0415f},
{0.0557f, -0.2040f, 1.0570f}};
private static float m_inv[][] = {{0.4124f, 0.3576f, 0.1805f},
{0.2126f, 0.7152f, 0.0722f},
{0.0193f, 0.1192f, 0.9505f}};
// Hard-coded D65 standard illuminant.
private static float refX = 0.95047f;
private static float refY = 1.00000f;
private static float refZ = 1.08883f;
private static float refU = 0.19784f; // 4 * refX / (refX + 15 * refY + 3 * refZ)
private static float refV = 0.46834f; // 9 * refY / (refX + 15 * refY + 3 * refZ)
// CIE LAB and LUV constants.
private static float lab_e = 0.008856f;
private static float lab_k = 903.3f;
private static final int RGB_R = 0;
private static final int RGB_G = 1;
private static final int RGB_B = 2;
private static final int XYZ_X = 0;
private static final int XYZ_Y = 1;
private static final int XYZ_Z = 2;
private static final int LUV_L = 0;
private static final int LUV_U = 1;
private static final int LUV_V = 2;
private static final int LCH_L = 0;
private static final int LCH_C = 1;
private static final int LCH_H = 2;
private static final int HUSL_H = 0;
private static final int HUSL_S = 1;
private static final int HUSL_L = 2;
/**
* For a given lightness and hue, return the maximum chroma that fits in the RGB gamut.
*/
public static float maxChroma(float L, float H) {
// The CoffeeScript and JavaScript versions of HUSL have this function broken up into several
// schönfinkeling/currying-style functions. This however doesn't work as well in Java. Therefore, everything is cramped
// up into one function.
float result = Float.POSITIVE_INFINITY;
final float hrad = H / 360 * 2 * HuslConverter.PI;
final float sinH = (float) Math.sin(hrad);
final float cosH = (float) Math.cos(hrad);
final float sub1 = (float) Math.pow(L + 16, 3) / 1560896f;
final float sub2 = sub1 > 0.008856f ? sub1 : L / 903.3f;
// Loop over the channels (red, green and blue).
for (int channel = 0; 3 != channel; channel++) {
final float[] channelM = HuslConverter.m[channel];
final float top = (0.99915f * channelM[0] + 1.05122f * channelM[1] + 1.14460f * channelM[2]) * sub2;
final float rbottom = 0.86330f * channelM[2] - 0.17266f * channelM[1];
final float lbottom = 0.12949f * channelM[2] - 0.38848f * channelM[0];
final float bottom = (rbottom * sinH + lbottom * cosH) * sub2;
// Calculate the C values that you can put together with the given L and H to produce a colour that with
// <RGB channel> = 1 or 2. This means that if C goes any higher, the colour will step outside of the RGB gamut.
final float C0 = L * top / bottom;
if (C0 > 0 && C0 < result) {
result = C0;
}
final float C1 = L * (top - 1.05122f * 1) / (bottom + 0.17266f * sinH);
if (C1 > 0 && C1 < result) {
result = C1;
}
}
return result;
}
private static float dotProduct(float a[], float b[]) {
float result = 0;
for (int index = 0; 3 != index; index++) {
result += a[index] * b[index];
}
return result;
}
private static float round(float num, int places) {
float n;
n = (float) Math.pow(10.0f, places);
return (float) (Math.floor(num * n) / n);
}
// Used for Lab and Luv conversions.
private static float f(float t) {
if (t > lab_e) {
return (float) Math.pow(t, 1f / 3);
} else {
return 7.787f * t + 16 / 116f;
}
}
private static float f_inv(float t) {
final float proposedResult = (float) Math.pow(t, 3);
if (proposedResult > lab_e) {
return proposedResult;
} else {
return (116 * t - 16) / lab_k;
}
}
// Used for RGB conversions.
private static float fromLinear(float c) {
if (c <= 0.0031308f) {
return 12.92f * c;
} else {
return 1.055f * (float) Math.pow(c, 1 / 2.4f) - 0.055f;
}
}
private static float toLinear(float c) {
if (c > 0.04045f) {
return (float) Math.pow((c + 0.055f) / 1.055f, 2.4f);
} else {
return c / 12.92f;
}
}
/**
* Converts an XYZ tuple to an RGB one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertXyzToRgb(float tuple[]) {
// Tuple represents input.
final float R = fromLinear(dotProduct(m[0], tuple));
final float G = fromLinear(dotProduct(m[1], tuple));
// Tuple is being filled with output.
tuple[RGB_B] = fromLinear(dotProduct(m[2], tuple));
tuple[RGB_R] = R;
tuple[RGB_G] = G;
}
/**
* Converts an XYZ tuple to an RGB one.
*/
public static float[] convertXyzToRgb(float xyzTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{xyzTuple[0], xyzTuple[1], xyzTuple[2]};
unsafeConvertXyzToRgb(result);
return result;
}
/**
* Converts an RGB tuple to an XYZ one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertRgbToXyz(float tuple[]) {
// Tuple represents input.
float rgbl[] = new float[]{toLinear(tuple[0]), toLinear(tuple[1]), toLinear(tuple[2])};
// Tuple is being filled with output.
tuple[XYZ_X] = dotProduct(m_inv[0], rgbl);
tuple[XYZ_Y] = dotProduct(m_inv[1], rgbl);
tuple[XYZ_Z] = dotProduct(m_inv[2], rgbl);
}
/**
* Converts an RGB tuple to an XYZ one.
*/
public static float[] convertRgbToXyz(float rgbTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{rgbTuple[0], rgbTuple[1], rgbTuple[2]};
unsafeConvertRgbToXyz(result);
return result;
}
/**
* Converts an XYZ tuple to an LUV one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertXyzToLuv(float tuple[]) {
// Tuple represents input.
final float X = tuple[XYZ_X];
final float Y = tuple[XYZ_Y];
final float Z = tuple[XYZ_Z];
final float varU = 4 * X / (X + 15 * Y + 3 * Z);
final float varV = 9 * Y / (X + 15 * Y + 3 * Z);
// Tuple is being filled with output.
final float L;
// Black will create a divide-by-zero error.
if (0 == (L = 116 * f(Y / refY) - 16)) {
tuple[0] = tuple[1] = tuple[2] = 0;
return;
}
tuple[LUV_L] = L;
tuple[LUV_U] = 13 * L * (varU - refU);
tuple[LUV_V] = 13 * L * (varV - refV);
}
/**
* Converts an XYZ tuple to an LUV one.
*/
public static float[] convertXyzToLuv(float xzyTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{xzyTuple[0], xzyTuple[1], xzyTuple[2]};
unsafeConvertXyzToLuv(result);
return result;
}
/**
* Converts an LUV tuple to an XYZ one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertLuvToXyz(float tuple[]) {
// Tuple represents input. Black will create a divide-by-zero error.
if (tuple[LUV_L] == 0) {
// Tuple is being filled with output. The X = L in the tuple is left untouched.
/* tuple[XYZ_X] = */ tuple[XYZ_Y] = tuple[XYZ_Z] = 0;
return;
}
final float L = tuple[LUV_L];
final float varY = f_inv((L + 16) / 116);
final float varU = tuple[LUV_U] / (13 * L) + refU;
final float varV = tuple[LUV_V] / (13 * L) + refV;
// Tuple is being filled with output.
final float Y = tuple[XYZ_Y] = varY * refY;
final float X = tuple[XYZ_X] = -9 * Y * varU / ((varU - 4) * varV - varU * varV);
/* final float Z = */ tuple[XYZ_Z] = (9 * Y - 15 * varV * Y - varV * X) / (3 * varV);
}
/**
* Converts an LUV tuple to an XYZ one.
*/
public static float[] convertLuvToXyz(float luvTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{luvTuple[0], luvTuple[1], luvTuple[2]};
unsafeConvertLuvToXyz(result);
return result;
}
/**
* Converts an LUV tuple to an LCH one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertLuvToLch(float tuple[]) {
// Tuple represents input.
final float U = tuple[LUV_U];
final float V = tuple[LUV_V];
// Tuple is being filled with output. The L in the tuple is left untouched.
tuple[LCH_C] = (float) Math.sqrt(U * U + V * V);
final float Hrad = (float) Math.atan2(V, U);
float H = Hrad * 360 / 2 / PI;
if (H < 0) {
H += 360;
}
tuple[LCH_H] = H;
}
/**
* Converts an LUV tuple to an LCH one.
*/
public static float[] convertLuvToLch(float luvTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{luvTuple[0], luvTuple[1], luvTuple[2]};
unsafeConvertLuvToLch(result);
return result;
}
/**
* Converts an LCH tuple to an LUV one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertLchToLuv(float tuple[]) {
// Tuple represents input.
final float C = tuple[LCH_C];
final float Hrad = tuple[LCH_H] / 360 * 2 * PI;
// Tuple is being filled with output. The L in the tuple is left untouched.
tuple[LUV_U] = (float) Math.cos(Hrad) * C;
tuple[LUV_V] = (float) Math.sin(Hrad) * C;
}
/**
* Converts an LCH tuple to an LUV one.
*/
public static float[] convertLchToLuv(float lchTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{lchTuple[0], lchTuple[1], lchTuple[2]};
unsafeConvertLchToLuv(result);
return result;
}
/**
* Converts an HUSL tuple to an LCH one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertHuslToLch(float tuple[]) {
// Tuple represents input.
final float H = tuple[HUSL_H];
final float L = tuple[HUSL_L];
// Bad things happen when you reach a limit.
if (L > 99.9999f) {
// Tuple is being filled with output.
tuple[LCH_L] = 100;
tuple[LCH_C] = 0;
tuple[LCH_H] = H;
return;
} else if (L < 0.00001f) {
// Tuple is being filled with output.
tuple[LCH_L] = tuple[LCH_C] = 0;
tuple[LCH_H] = H;
return;
}
// Tuple is being filled with output.
// I already tried this scaling function to improve the chroma uniformity. It did not work very well.
// tuple[LCH_C] = Math.pow(tuple[HUSL_S] / 100, 1 / t) * maxChroma(L, H)
tuple[LCH_C] = maxChroma(L, H) / 100 * tuple[HUSL_S];
tuple[LCH_L] = L;
tuple[LCH_H] = H;
}
/**
* Converts an HUSL tuple to an LCH one.
*/
public static float[] convertHuslToLch(float huslTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{huslTuple[0], huslTuple[1], huslTuple[2]};
unsafeConvertHuslToLch(result);
return result;
}
/**
* Converts an LCH tuple to an HUSL one, altering the passed array to represent the output (discarding the input).
*/
private static void unsafeConvertLchToHusl(float tuple[]) {
// Tuple represents input.
final float L = tuple[LCH_L];
final float H = tuple[LCH_H];
// Bad things happen when you reach a limit.
if (L > 99.9999f) {
// Tuple is being filled with output.
tuple[HUSL_H] = H;
tuple[HUSL_S] = 0;
tuple[HUSL_L] = 100;
return;
} else if (L < 0.00001f) {
// Tuple is being filled with output.
tuple[HUSL_H] = H;
tuple[HUSL_S] = tuple[HUSL_L] = 0;
return;
}
// Tuple is being filled with output.
tuple[HUSL_S] = tuple[LCH_C] / maxChroma(L, H) * 100;
tuple[HUSL_H] = H;
tuple[HUSL_L] = L;
}
/**
* Converts an LCH tuple to an HUSL one.
*/
public static float[] convertLchToHusl(float lchTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{lchTuple[0], lchTuple[1], lchTuple[2]};
unsafeConvertLchToHusl(result);
return result;
}
/**
* Converts an HUSL tuple to an RGB one.
*/
public static float[] convertHuslToRgb(float huslTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{huslTuple[0], huslTuple[1], huslTuple[2]};
// Calculate the LCH values.
unsafeConvertHuslToLch(result);
// Calculate the LUV values.
unsafeConvertLchToLuv(result);
// Calculate the XYZ values.
unsafeConvertLuvToXyz(result);
// Calculate the RGB values.
unsafeConvertXyzToRgb(result);
return result;
}
/**
* Converts an RGB tuple to an HUSL one.
*/
public static float[] convertRgbToHusl(float rgbTuple[]) {
// Clone the tuple, to avoid changing the input.
final float[] result = new float[]{rgbTuple[0], rgbTuple[1], rgbTuple[2]};
// Calculate the XYZ values.
unsafeConvertRgbToXyz(result);
// Calculate the LUV values.
unsafeConvertXyzToLuv(result);
// Calculate the LCH values.
unsafeConvertLuvToLch(result);
// Calculate the HUSL values.
unsafeConvertLchToHusl(result);
return result;
}
}
|