1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
# The LiveScript parser is generated by [Jison](http://github.com/zaach/jison)
# from this grammar file. Jison is a bottom-up parser generator, similar in
# style to [Bison](http://www.gnu.org/software/bison),
# implemented in JavaScript.
# It can recognize
# [LALR(1), LR(0), SLR(1), and LR(1)](http://en.wikipedia.org/wiki/LR_grammar)
# type grammars. To create the Jison parser, we list the pattern to match
# on the left-hand side, and the action to take (usually the creation of syntax
# tree nodes) on the right. As the parser runs, it
# shifts tokens from our token stream, from left to right, and
# [attempts to match](http://en.wikipedia.org/wiki/Bottom-up_parsing)
# the token sequence against the rules below. When a match can be made, it
# reduces into the
# [nonterminal](http://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols)
# (the enclosing name at the top), and we proceed from there.
#
# If you run the `scripts/build-parser` command, Jison constructs a parse table
# from our rules and saves it into [lib/parser.js](../lib/parser.js).
# Jison DSL
# ---------
# Our handy DSL for Jison grammar generation, thanks to
# [Tim Caswell](http://github.com/creationix). For every rule in the grammar,
# we pass the pattern-defining string, the action to run, and extra options,
# optionally. If no action is specified, we simply pass the value of the
# previous nonterminal.
ditto = {}
last = ''
o = (patterns, action, options) ->
patterns.=trim!.split /\s+/
action &&= if action is ditto then last else
"#action"
.replace /^function\s*\(\)\s*\{\s*return\s*([\s\S]*);\s*\}/ (, a) ->
"$$ = #{ (if 'L(' is a.slice 0, 2 then '(' else "L(@1, @#{patterns.length},") }#a);"
.replace /\b(?!Er)(?!String)[A-Z][\w.]*/g 'yy.$&'
.replace /(\.L\()\s*(\d+\s*\,)\s*(\d+\s*\,)?/g (, a, b, c) ->
"#a@#{ b || '1,' }@#{ c || b || "#{patterns.length}," }"
[patterns, last := action or '', options]
# Grammatical Rules
# -----------------
# In all of the rules that follow, you'll see the name of the nonterminal as
# the key to a list of alternative matches. With each match's action, the
# dollar-sign variables are provided by Jison as references to the value of
# their numeric position, so in this rule:
#
# Expression MATH Expression
#
# `$1` would be the value of the first _Expression_, `$2` would be the token
# value for the _MATH_ terminal, and `$3` would be the value of the second
# _Expression_.
bnf =
# The types of things that can be accessed or called into.
Chain:
o 'ID' -> Chain L 1 Var $1
o 'KeyLike' -> Chain $1
o 'List' ditto
o 'LITERAL' -> Chain L 1 Literal $1
o 'Chain Index' -> $1.add $2
o 'Chain CALL( ArgList OptComma )CALL' -> $1.add L 2 5 Call $3
o 'Chain ?' -> Chain L 1 2 Existence $1.unwrap!
o 'LET CALL( ArgList OptComma )CALL Block' -> Chain L 1 5 Call.let $3, $6
o '[ Expression LoopHeads ]'
, -> Chain L 1 4 ($3.0.make-comprehension $2, $3.slice 1)
o '[ Expression LoopHeads DEDENT ]'
, -> Chain L 1 5 ($3.0.make-comprehension $2, $3.slice 1)
o '{ [ ArgList OptComma ] LoopHeads }'
, -> Chain L 1 7 ($6.0.add-obj-comp!.make-comprehension (L 3 Arr $3), $6.slice 1)
o '( BIOP )' -> Chain L 2 Binary $2
o '( BIOP Expression )' -> Chain L 2 Binary $2, , $3
o '( Expression BIOP )' -> Chain L 3 Binary $3, $2
o '( BIOPR )'
, -> Chain L 2 if '!' is $2.char-at 0
then Binary $2.slice(1) .invert-it!
else Binary $2
o '( BIOPR Expression )'
, -> Chain L 2 if '!' is $2.char-at 0
then Binary $2.slice(1), , $3 .invert-it!
else Binary $2, , $3
o '( Expression BIOPR )'
, -> Chain L 3 if '!' is $3.char-at 0
then Binary $3.slice(1), $2 .invert-it!
else Binary $3, $2
o '( BIOPBP )' -> Chain L 2 Binary $2
o '( BIOPBP CALL( ArgList OptComma )CALL )' -> Chain L 2 Binary $2, , $4
o '( BIOPP )' -> Chain L 2 Binary $2
o '( PARAM( ArgList OptComma )PARAM BIOPP )' -> Chain L 6 Binary $6, $3
o '( UNARY )' -> Chain L 2 Unary $2
o '( CREMENT )' ditto
o '( BACKTICK Chain BACKTICK )' -> Chain $3
o '( Expression BACKTICK Chain BACKTICK )' -> Chain L 2 5 $4.add L 2 Call [$2]
o '( BACKTICK Chain BACKTICK Expression )'
, -> Chain(L 3 Chain Var 'flip$' .add L 3 Call [$3]).flip-it!.add L 5 Call [$5]
o '[ Expression TO Expression ]'
, -> Chain L 2 4 new For from: $2, op: $3, to: $4, in-comprehension: true
o '[ Expression TO Expression BY Expression ]'
, -> Chain L 2 6 new For from: $2, op: $3, to: $4, step: $6, in-comprehension: true
o '[ FROM Expression TO Expression ]'
, -> Chain L 2 5 new For from: $3, op: $4, to: $5, in-comprehension: true
o '[ FROM Expression TO Expression BY Expression ]'
, -> Chain L 2 7 new For from: $3, op: $4, to: $5, step: $7, in-comprehension: true
o '[ TO Expression ]'
, -> Chain L 2 3 new For from: (Chain Literal 0), op: $2, to: $3, in-comprehension: true
o '[ TO Expression BY Expression ]'
, -> Chain L 2 5 new For from: (Chain Literal 0), op: $2, to: $3, step: $5, in-comprehension: true
o 'Chain DOT [ Expression TO Expression BY Expression ]'
, -> Chain L 1 9 new StepSlice op: $5, target: $1, from: $4, to: $6, step: $8
o 'Chain DOT [ TO Expression BY Expression ]'
, -> Chain L 1 8 new StepSlice op: $4, target: $1, from: (Literal 0), to: $5, step: $7
o 'Chain DOT [ Expression TO Expression ]'
, -> Chain L 1 7 Slice type: $5, target: $1, from: $4, to: $6
o 'Chain DOT [ Expression TO ]'
, -> Chain L 1 6 Slice type: $5, target: $1, from: $4
o 'Chain DOT [ TO Expression ]'
, -> Chain L 1 6 Slice type: $4, target: $1, to: $5
o 'Chain DOT [ TO ]'
, -> Chain L 1 5 Slice type: $4, target: $1
o 'WITH Expression Block'
, -> Chain L 1 2 Cascade $2, $3, 'with'
# Normal loops have a block of expressions to execute and an optional
# `else` clause.
#
# The grammar won't permit loop forms that end in Expression to be
# productions in Chain, so those other loops are in Expression.
o 'LoopHead Block Else' -> Chain($1.add-body $2 .add-else $3)
KeyLike:
o 'STRNUM' -> Literal $1
o 'Parenthetical'
Index:
o 'DOT ID' -> Index (L 2 Key $2), $1, true
o 'DOT KeyLike' -> Index $2, $1, true
o 'DOT List' ditto
# An array or object
List:
o '[ ArgList OptComma ]' -> Arr $2
o '{ Properties OptComma }' -> Obj $2
# can be labeled to perform named destructuring.
o '[ ArgList OptComma ] LABEL' -> Arr $2 .named $5
o '{ Properties OptComma } LABEL' -> Obj $2 .named $5
# **ArgList** is either the list of objects passed into a function call,
# the parameter list of a function, or the contents of an array literal
# (i.e. comma-separated expressions). Newlines work as well.
ArgList:
o '' -> []
o 'Arg' -> [$1]
o 'ArgList , Arg' -> $1 ++ $3
o 'ArgList OptComma NEWLINE Arg' -> $1 ++ $4
o 'ArgList OptComma INDENT ArgList OptComma DEDENT' ditto
Arg:
o 'Expression'
o '... Expression' -> Splat $2
o '...' -> Splat (L 1, Arr!), true
# An optional, trailing comma.
OptComma:
o ''
o ','
# A list of lines, separated by newlines or semicolons.
Lines:
o '' -> Block!
o 'Line' -> Block $1
o 'Lines NEWLINE Line' -> $1.add $3
o 'Lines NEWLINE'
Line:
o 'Expression'
# Cascade without `with`
o 'Expression Block' -> Cascade $1, $2, 'cascade'
o 'PARAM( ArgList OptComma )PARAM <- Expression'
, -> Call.back $2, $6, /~/.test($5), /--|~~/.test($5), /!/.test($5), /\*/.test($5)
o 'COMMENT' -> JS $1, true true
# [yadayadayada](http://search.cpan.org/~tmtm/Yada-Yada-Yada-1.00/Yada.pm)
o '...' -> Throw L 1 JS "Error('unimplemented')"
o 'REQUIRE Chain' -> Require $2.unwrap!
# An indented block of expressions.
# Note that [Lexer](#lexer) rewrites some single-line forms into blocks.
Block:
o 'INDENT Lines DEDENT' -> $2
...
SplatChain:
o '... Chain' -> Splat $2.unwrap!
...
# All the different types of expressions in our language.
Expression:
o 'Chain CLONEPORT Expression'
, -> Import (L 1 2 Unary '^^' $1, prec: 'UNARY'), $3, false
o 'Chain CLONEPORT Block'
, -> Import (L 1 2 Unary '^^' $1, prec: 'UNARY'), $3.unwrap!, false
o 'Expression BACKTICK Chain BACKTICK Expression' -> $3.add L 1 5 Call [$1, $5]
o 'Chain' -> $1.unwrap!
o 'Chain ASSIGN Expression'
, -> Assign $1.unwrap!, $3 , L 2 Box $2
o 'SplatChain ASSIGN Expression'
, -> Assign $1, $3 , L 2 Box $2
o 'Chain ASSIGN INDENT ArgList OptComma DEDENT'
, -> Assign $1.unwrap!, Arr.maybe($4), L 2 Box $2
o 'Expression IMPORT Expression'
, -> Import $1, $3 , $2 is '<<<<'
o 'Expression IMPORT INDENT ArgList OptComma DEDENT'
, -> Import $1, Arr.maybe($4), $2 is '<<<<'
o 'CREMENT Chain' -> Unary $1, $2.unwrap!
o 'Chain CREMENT' -> Unary $2, $1.unwrap!, true
o 'CREMENT ... Chain' -> Unary $1, Splat $3.unwrap!
o 'SplatChain CREMENT' -> Unary $2, $1, true
o 'UNARY ASSIGN Chain' -> Assign $3.unwrap!, [$1] L 2 Box $2
o '+- ASSIGN Chain' ditto
o 'CLONE ASSIGN Chain' ditto
o 'UNARY ASSIGN ... Chain' -> Assign Splat($4.unwrap!), [$1] L 2 Box $2
o '+- ASSIGN ... Chain' ditto
o 'CLONE ASSIGN ... Chain' ditto
o 'UNARY Expression' -> Unary $1, $2
o '+- Expression' ditto, prec: 'UNARY'
o 'CLONE Expression' ditto, prec: 'UNARY'
o 'UNARY ... Expression' -> Unary $1, Splat $3
o '+- ... Expression' ditto, prec: 'UNARY'
o 'CLONE ... Expression' ditto, prec: 'UNARY'
o 'UNARY ... INDENT ArgList OptComma DEDENT' -> Unary $1, Splat Arr $4
o 'UNARY INDENT ArgList OptComma DEDENT' -> Unary $1, Arr.maybe $3
o 'YIELD' -> Yield $1
o 'YIELD Expression' -> Yield $1, $2
o 'Expression +- Expression' -> L 2 Binary $2, $1, $3
o 'Expression COMPARE Expression' ditto
o 'Expression LOGIC Expression' ditto
o 'Expression MATH Expression' ditto
o 'Expression POWER Expression' ditto
o 'Expression SHIFT Expression' ditto
o 'Expression BITWISE Expression' ditto
o 'Expression CONCAT Expression' ditto
o 'Expression COMPOSE Expression' ditto
# the `*if` is required for the proper compilation for use with the dsl
o 'Expression RELATION Expression' ->
*if '!' is $2.char-at 0 then Binary $2.slice(1), $1, $3 .invert!
else Binary $2 , $1, $3
o 'Expression PIPE Expression' -> Block $1 .pipe $3, $2
o 'Expression BACKPIPE Expression' -> Block $1 .pipe [$3], $2
o 'Chain !?' -> Existence $1.unwrap!, true
# The function literal can be either anonymous with `->`,
o 'PARAM( ArgList OptComma )PARAM -> Block'
, -> Fun $2, $6, /~/.test($5), /--|~~/.test($5), /!/.test($5), /\*/.test($5), />>/.test($5)
# or named with `function`.
o 'FUNCTION CALL( ArgList OptComma )CALL Block' -> (Fun $3, $6).named $1
o 'GENERATOR CALL( ArgList OptComma )CALL Block'
, -> (Fun $3, $6, false, false, false, true, false).named $1
o 'ASYNC FUNCTION CALL( ArgList OptComma )CALL Block'
, -> (Fun $4, $7, false, false, false, false, true).named $2
o 'ASYNC GENERATOR CALL( ArgList OptComma )CALL Block'
, -> (Fun $4, $7, false, false, false, true, true).named $2
# The full complement of `if` and `unless` expressions
o 'IF Expression Block Else' -> L 1 2 If $2, $3, $1 is 'unless' .add-else $4
# and their postfix forms.
o 'Expression POST_IF Expression' -> L 2 3 If $3, $1, $2 is 'unless'
# In addition to the LoopHead-based forms in Chain, here are a few more loops:
# postfix with a single expression,
o 'DO Block WHILE Expression'
, -> new While($4, $3 is 'until', true).add-body $2
# with a guard
o 'DO Block WHILE Expression CASE Expression'
, -> new While($4, $3 is 'until', true).add-guard $6 .add-body $2
# `return` or `throw`.
o 'HURL Expression' -> Jump[$1] $2
o 'HURL INDENT ArgList OptComma DEDENT' -> Jump[$1] Arr.maybe $3
o 'HURL' -> Jump[$1]!
# `break` or `continue`.
o 'JUMP' -> new Jump $1
o 'JUMP ID' -> new Jump $1, $2
o 'SWITCH Exprs Cases' -> new Switch $1, $2, $3
o 'SWITCH Exprs Cases DEFAULT Block' -> new Switch $1, $2, $3, $5
o 'SWITCH Exprs Cases ELSE Block' -> new Switch $1, $2, $3, $5
o 'SWITCH Cases' -> new Switch $1, null $2
o 'SWITCH Cases DEFAULT Block' -> new Switch $1, null $2, $4
o 'SWITCH Cases ELSE Block' -> new Switch $1, null $2, $4
o 'SWITCH Block' -> new Switch $1, null [], $2
o 'TRY Block' -> new Try $2
o 'TRY Block CATCH Block' -> new Try $2, , (L 3 $4)
o 'TRY Block CATCH Block FINALLY Block' -> new Try $2, , (L 3 $4), (L 5 $6)
o 'TRY Block CATCH Arg Block' -> new Try $2, $4, (L 3 4 $5)
o 'TRY Block CATCH Arg Block FINALLY Block' -> new Try $2, $4, (L 3 4 $5), (L 6 $7)
o 'TRY Block FINALLY Block' -> new Try $2, , , (L 3 $4)
o 'CLASS Chain OptExtends OptImplements Block'
, -> new Class title: $2.unwrap!, sup: $3, mixins: $4, body: $5
o 'CLASS OptExtends OptImplements Block'
, -> new Class sup: $2, mixins: $3, body: $4
o 'Chain EXTENDS Expression' -> Util.Extends $1.unwrap!, $3
o 'LABEL Expression' -> new Label $1, $2
o 'LABEL Block' ditto
# `var`, `const`, `export`, or `import`
o 'DECL INDENT ArgList OptComma DEDENT' -> Decl $1, $3, yylineno+1
Exprs:
o 'Expression' -> [$1]
o 'Exprs , Expression' -> $1 ++ $3
KeyColon:
o 'ID :' -> Key $1
o 'KeyLike :' -> $1
# The various forms of property.
Property:
o 'KeyColon Expression' -> Prop $1, $2
o 'KeyColon INDENT ArgList OptComma DEDENT' -> Prop $1, Arr.maybe($3)
o 'Expression' -> Prop null $1
o '... Expression' -> Prop Splat!, $2
o 'COMMENT' -> JS $1, true true
# Properties within an object literal can be separated by
# commas, as in JavaScript, or simply by newlines.
Properties:
o '' -> []
o 'Property' -> [$1]
o 'Properties , Property' -> $1 ++ $3
o 'Properties OptComma NEWLINE Property' -> $1 ++ $4
o 'INDENT Properties OptComma DEDENT' -> $2
Parenthetical:
o '( Body )' -> Parens $2.chomp!.unwrap!, false, $1 is '"', (L 1 {}), (L 3 {})
...
Body:
o 'Lines'
o 'Block'
o 'Block NEWLINE Lines' -> $1.add $3
Else:
o '' -> null
o 'ELSE Block' -> $2
o 'ELSE IF Expression Block Else' -> If $3, $4, $2 is 'unless' .add-else $5
LoopHead:
# The source of a `for`-loop is an array, object, or range.
# Unless it's iterating over an object, you can choose to step through
# in fixed-size increments.
o 'FOR Chain IN Expression'
, -> new For kind: $1, item: $2.unwrap!, index: $3, source: $4
o 'FOR Chain IN Expression CASE Expression'
, -> new For kind: $1, item: $2.unwrap!, index: $3, source: $4, guard: $6
o 'FOR Chain IN Expression BY Expression'
, -> new For kind: $1, item: $2.unwrap!, index: $3, source: $4, step: $6
o 'FOR Chain IN Expression BY Expression CASE Expression'
, -> new For kind: $1, item: $2.unwrap!, index: $3, source: $4, step: $6, guard: $8
o 'FOR Expression'
, -> new For kind: $1, source: $2, ref: true
o 'FOR Expression CASE Expression'
, -> new For kind: $1, source: $2, ref: true, guard: $4
o 'FOR Expression BY Expression'
, -> new For kind: $1, source: $2, ref: true, step: $4
o 'FOR Expression BY Expression CASE Expression'
, -> new For kind: $1, source: $2, ref: true, step: $4, guard: $6
o 'FOR ID OF Expression'
, -> new For {+object, kind: $1, index: $2, source: $4}
o 'FOR ID OF Expression CASE Expression'
, -> new For {+object, kind: $1, index: $2, source: $4, guard: $6}
o 'FOR ID , Chain OF Expression'
, -> new For {+object, kind: $1, index: $2, item: $4.unwrap!, source: $6}
o 'FOR ID , Chain OF Expression CASE Expression'
, -> new For {+object, kind: $1, index: $2, item: $4.unwrap!, source: $6, guard: $8}
o 'FOR ID FROM Expression TO Expression'
, -> new For kind: $1, index: $2, from: $4, op: $5, to: $6
o 'FOR FROM Expression TO Expression'
, -> new For kind: $1, from: $3, op: $4, to: $5, ref: true
o 'FOR ID FROM Expression TO Expression CASE Expression'
, -> new For kind: $1, index: $2, from: $4, op: $5, to: $6, guard: $8
o 'FOR FROM Expression TO Expression CASE Expression'
, -> new For kind: $1, from: $3, op: $4, to: $5, guard: $7, ref: true
o 'FOR ID FROM Expression TO Expression BY Expression'
, -> new For kind: $1, index: $2, from: $4, op: $5, to: $6, step: $8
o 'FOR FROM Expression TO Expression BY Expression'
, -> new For kind: $1, from: $3, op: $4, to: $5, step: $7, ref: true
o 'FOR ID FROM Expression TO Expression BY Expression CASE Expression'
, -> new For kind: $1, index: $2, from: $4, op: $5, to: $6, step: $8, guard: $10
o 'FOR FROM Expression TO Expression BY Expression CASE Expression'
, -> new For kind: $1, from: $3, op: $4, to: $5, step: $7, guard: $9, ref: true
o 'FOR ID FROM Expression TO Expression CASE Expression BY Expression'
, -> new For kind: $1, index: $2, from: $4, op: $5, to: $6, guard: $8, step: $10
o 'FOR FROM Expression TO Expression CASE Expression BY Expression'
, -> new For kind: $1, from: $3, op: $4, to: $5, guard: $7, step: $9, ref: true
o 'WHILE Expression' -> new While $2, $1 is 'until'
o 'WHILE Expression CASE Expression' -> new While $2, $1 is 'until' .add-guard $4
o 'WHILE Expression , Expression' -> new While $2, $1 is 'until', $4
o 'WHILE Expression , Expression CASE Expression'
, -> new While $2, $1 is 'until', $4 .add-guard $6
LoopHeads:
o 'LoopHead' -> [$1]
o 'LoopHeads LoopHead' -> $1 ++ $2
o 'LoopHeads NEWLINE LoopHead' -> $1 ++ $3
o 'LoopHeads INDENT LoopHead' -> $1 ++ $3
Cases:
o 'CASE Exprs Block' -> [L 1 2 new Case $2, $3]
o 'Cases CASE Exprs Block' -> $1 ++ L 2 3 new Case $3, $4
OptExtends:
o 'EXTENDS Expression' -> $2
o '' -> null
OptImplements:
o 'IMPLEMENTS Exprs' -> $2
o '' -> null
# Precedence and Associativity
# ----------------------------
# Following these rules is what makes
# `a + b * c` parse as `a + (b * c)` (rather than `(a + b) * c`),
# and `x = y = z` `x = (y = z)` (not `(x = y) = z`).
operators =
# Listed from lower precedence.
<[ left POST_IF ]>
<[ right ASSIGN HURL ]>
<[ right YIELD ]>
<[ right BACKPIPE ]>
<[ left PIPE ]>
<[ right , FOR WHILE EXTENDS INDENT SWITCH CASE TO BY LABEL ]>
<[ right LOGIC ]>
<[ left BITWISE ]>
<[ right COMPARE ]>
<[ left RELATION ]>
<[ right CONCAT ]>
<[ left SHIFT IMPORT CLONEPORT ]>
<[ left +- ]>
<[ left MATH ]>
<[ right UNARY ]>
<[ right POWER ]>
<[ right COMPOSE ]>
<[ nonassoc CREMENT ]>
<[ nonassoc ... ]>
<[ left BACKTICK ]>
# Wrapping Up
# -----------
# Process all of our rules and prepend resolutions, while recording all
# terminals (every symbol which does not appear as the name of a rule above)
# as `tokens`.
tokens = do
for name, alts of bnf
for alt in alts
[token for token in alt.0 when token not of bnf]
.join ' '
bnf.Root = [[['Body'] 'return $$']]
# Finally, initialize the parser with the name of the root.
module.exports =
new (require 'jison').Parser {bnf, operators, tokens, start-symbol: 'Root'}
|