File: repl.txt

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (156 lines) | stat: -rw-r--r-- 5,097 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

{{alias}}( N, order, x, strideX, y, strideY )
    Simultaneously sorts two double-precision floating-point strided arrays
    based on the sort order of the first array using insertion sort.

    The `N` and `stride` parameters determine which elements in `x` and `y` are
    accessed at runtime.

    Indexing is relative to the first index. To introduce an offset, use typed
    array views.

    If `N <= 0` or `order == 0`, the function leaves `x` and `y` unchanged.

    The algorithm distinguishes between `-0` and `+0`. When sorted in increasing
    order, `-0` is sorted before `+0`. When sorted in decreasing order, `-0` is
    sorted after `+0`.

    The algorithm sorts `NaN` values to the end. When sorted in increasing
    order, `NaN` values are sorted last. When sorted in decreasing order, `NaN`
    values are sorted first.

    The algorithm has space complexity O(1) and worst case time complexity
    O(N^2).

    The algorithm is efficient for *small* strided arrays (typically N <= 20)
    and is particularly efficient for sorting strided arrays which are already
    substantially sorted.

    The algorithm is *stable*, meaning that the algorithm does *not* change the
    order of strided array elements which are equal or equivalent (e.g., `NaN`
    values).

    The input strided arrays are sorted *in-place* (i.e., the input strided
    arrays is *mutated*).

    Parameters
    ----------
    N: integer
        Number of indexed elements.

    order: number
        Sort order. If `order < 0`, the function sorts `x` in decreasing order.
        If `order > 0`, the function sorts `x` in increasing order.

    x: Float64Array
        First input array.

    strideX: integer
        Index increment for `x`.

    y: Float64Array
        Second input array.

    strideY: integer
        Index increment for `y`.

    Returns
    -------
    x: Float64Array
        Input array `x`.

    Examples
    --------
    // Standard Usage:
    > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
    > var y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
    > {{alias}}( x.length, 1, x, 1, y, 1 )
    <Float64Array>[ -4.0, -2.0, 1.0, 3.0 ]
    > y
    <Float64Array>[ 3.0, 1.0, 0.0, 2.0 ]

    // Using `N` and `stride` parameters:
    > x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
    > y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    > {{alias}}( N, -1, x, 2, y, 2 )
    <Float64Array>[ 3.0, -2.0, 1.0, -4.0 ]
    > y
    <Float64Array>[ 2.0, 1.0, 0.0, 3.0 ]

    // Using view offsets:
    > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
    > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
    > var y0 = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
    > var y1 = new {{alias:@stdlib/array/float64}}( y0.buffer, y0.BYTES_PER_ELEMENT*1 );
    > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
    > {{alias}}( N, 1, x1, 2, y1, 2 )
    <Float64Array>[ -4.0, 3.0, -2.0 ]
    > x0
    <Float64Array>[ 1.0, -4.0, 3.0, -2.0 ]
    > y0
    <Float64Array>[ 0.0, 3.0, 2.0, 1.0 ]

{{alias}}.ndarray( N, order, x, strideX, offsetX, y, strideY, offsetY )
    Simultaneously sorts two double-precision floating-point strided arrays
    based on the sort order of the first array using insertion sort and
    alternative indexing semantics.

    While typed array views mandate a view offset based on the underlying
    buffer, the `offset` parameter supports indexing semantics based on a
    starting index.

    Parameters
    ----------
    N: integer
        Number of indexed elements.

    order: number
        Sort order. If `order < 0`, the function sorts `x` in decreasing order.
        If `order > 0`, the function sorts `x` in increasing order.

    x: Float64Array
        First input array.

    strideX: integer
        Index increment for `x`.

    offsetX: integer
        Starting index of `x`.

    y: Float64Array
        Second input array.

    strideY: integer
        Index increment for `y`.

    offsetY: integer
        Starting index of `y`.

    Returns
    -------
    x: Float64Array
        Input array `x`.

    Examples
    --------
    // Standard Usage:
    > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
    > var y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
    > {{alias}}.ndarray( x.length, 1, x, 1, 0, y, 1, 0 )
    <Float64Array>[ -4.0, -2.0, 1.0, 3.0 ]
    > y
    <Float64Array>[ 3.0, 1.0, 0.0, 2.0 ]

    // Using an index offset:
    > x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
    > y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    > {{alias}}.ndarray( N, 1, x, 2, 1, y, 2, 1 )
    <Float64Array>[ 1.0, -4.0, 3.0, -2.0 ]
    > y
    <Float64Array>[ 0.0, 3.0, 2.0, 1.0 ]

    See Also
    --------