1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
{{alias}}( N, order, x, strideX, y, strideY )
Simultaneously sorts two strided arrays based on the sort order of the first
array using Shellsort.
The `N` and `stride` parameters determine which elements in `x` and `y` are
accessed at runtime.
Indexing is relative to the first index. To introduce an offset, use typed
array views.
If `N <= 0` or `order == 0`, the function leaves `x` and `y` unchanged.
The algorithm distinguishes between `-0` and `+0`. When sorted in increasing
order, `-0` is sorted before `+0`. When sorted in decreasing order, `-0` is
sorted after `+0`.
The algorithm sorts `NaN` values to the end. When sorted in increasing
order, `NaN` values are sorted last. When sorted in decreasing order, `NaN`
values are sorted first.
The algorithm has space complexity O(1) and worst case time complexity
O(N^(4/3)).
The algorithm is efficient for *shorter* strided arrays (typically N <= 50).
The algorithm is *unstable*, meaning that the algorithm may change the order
of strided array elements which are equal or equivalent (e.g., `NaN`
values).
The input strided arrays are sorted *in-place* (i.e., the input strided
arrays is *mutated*).
Parameters
----------
N: integer
Number of indexed elements.
order: number
Sort order. If `order < 0`, the function sorts `x` in decreasing order.
If `order > 0`, the function sorts `x` in increasing order.
x: Array<number>|TypedArray
First input array.
strideX: integer
Index increment for `x`.
y: Array<number>|TypedArray
Second input array.
strideY: integer
Index increment for `y`.
Returns
-------
x: Array<number>|TypedArray
Input array `x`.
Examples
--------
// Standard Usage:
> var x = [ 1.0, -2.0, 3.0, -4.0 ];
> var y = [ 0.0, 1.0, 2.0, 3.0 ];
> {{alias}}( x.length, 1, x, 1, y, 1 )
[ -4.0, -2.0, 1.0, 3.0 ]
> y
[ 3.0, 1.0, 0.0, 2.0 ]
// Using `N` and `stride` parameters:
> x = [ 1.0, -2.0, 3.0, -4.0 ];
> y = [ 0.0, 1.0, 2.0, 3.0 ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}( N, -1, x, 2, y, 2 )
[ 3.0, -2.0, 1.0, -4.0 ]
> y
[ 2.0, 1.0, 0.0, 3.0 ]
// Using view offsets:
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
> var y0 = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] );
> var y1 = new {{alias:@stdlib/array/float64}}( y0.buffer, y0.BYTES_PER_ELEMENT*1 );
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
> {{alias}}( N, 1, x1, 2, y1, 2 )
<Float64Array>[ -4.0, 3.0, -2.0 ]
> x0
<Float64Array>[ 1.0, -4.0, 3.0, -2.0 ]
> y0
<Float64Array>[ 0.0, 3.0, 2.0, 1.0 ]
{{alias}}.ndarray( N, order, x, strideX, offsetX, y, strideY, offsetY )
Simultaneously sorts two strided arrays based on the sort order of the first
array using Shellsort and alternative indexing semantics.
While typed array views mandate a view offset based on the underlying
buffer, the `offset` parameter supports indexing semantics based on a
starting index.
Parameters
----------
N: integer
Number of indexed elements.
order: number
Sort order. If `order < 0`, the function sorts `x` in decreasing order.
If `order > 0`, the function sorts `x` in increasing order.
x: Array<number>|TypedArray
First input array.
strideX: integer
Index increment for `x`.
offsetX: integer
Starting index of `x`.
y: Array<number>|TypedArray
Second input array.
strideY: integer
Index increment for `y`.
offsetY: integer
Starting index of `y`.
Returns
-------
x: Array<number>|TypedArray
Input array `x`.
Examples
--------
// Standard Usage:
> var x = [ 1.0, -2.0, 3.0, -4.0 ];
> var y = [ 0.0, 1.0, 2.0, 3.0 ];
> {{alias}}.ndarray( x.length, 1, x, 1, 0, y, 1, 0 )
[ -4.0, -2.0, 1.0, 3.0 ]
> y
[ 3.0, 1.0, 0.0, 2.0 ]
// Using an index offset:
> x = [ 1.0, -2.0, 3.0, -4.0 ];
> y = [ 0.0, 1.0, 2.0, 3.0 ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}.ndarray( N, 1, x, 2, 1, y, 2, 1 )
[ 1.0, -4.0, 3.0, -2.0 ]
> y
[ 0.0, 3.0, 2.0, 1.0 ]
See Also
--------
|