1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
{{alias}}( N, order, x, stride )
Sorts a strided array using Shellsort.
The `N` and `stride` parameters determine which elements in `x` are accessed
at runtime.
Indexing is relative to the first index. To introduce an offset, use typed
array views.
If `N <= 0` or `order == 0`, the function returns `x` unchanged.
The algorithm distinguishes between `-0` and `+0`. When sorted in increasing
order, `-0` is sorted before `+0`. When sorted in decreasing order, `-0` is
sorted after `+0`.
The algorithm sorts `NaN` values to the end. When sorted in increasing
order, `NaN` values are sorted last. When sorted in decreasing order, `NaN`
values are sorted first.
The algorithm has space complexity O(1) and worst case time complexity
O(N^(4/3)).
The algorithm is efficient for *shorter* strided arrays (typically N <= 50).
The algorithm is *unstable*, meaning that the algorithm may change the order
of strided array elements which are equal or equivalent (e.g., `NaN`
values).
The input strided array is sorted *in-place* (i.e., the input strided array
is *mutated*).
Parameters
----------
N: integer
Number of indexed elements.
order: number
Sort order. If `order < 0`, the function sorts `x` in decreasing order.
If `order > 0`, the function sorts `x` in increasing order.
x: Array<number>|TypedArray
Input array.
stride: integer
Index increment for `x`.
Returns
-------
x: Array<number>|TypedArray
Input array `x`.
Examples
--------
// Standard Usage:
> var x = [ 1.0, -2.0, 3.0, -4.0 ];
> {{alias}}( x.length, 1, x, 1 )
[ -4.0, -2.0, 1.0, 3.0 ]
// Using `N` and `stride` parameters:
> x = [ 1.0, -2.0, 3.0, -4.0 ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}( N, -1, x, 2 )
[ 3.0, -2.0, 1.0, -4.0 ]
// Using view offsets:
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
> {{alias}}( N, 1, x1, 2 )
<Float64Array>[ -4.0, 3.0, -2.0 ]
> x0
<Float64Array>[ 1.0, -4.0, 3.0, -2.0 ]
{{alias}}.ndarray( N, order, x, stride, offset )
Sorts a strided array using Shellsort and alternative indexing semantics.
While typed array views mandate a view offset based on the underlying
buffer, the `offset` parameter supports indexing semantics based on a
starting index.
Parameters
----------
N: integer
Number of indexed elements.
order: number
Sort order. If `order < 0`, the function sorts `x` in decreasing order.
If `order > 0`, the function sorts `x` in increasing order.
x: Array<number>|TypedArray
Input array.
stride: integer
Index increment for `x`.
offset: integer
Starting index of `x`.
Returns
-------
x: Array<number>|TypedArray
Input array `x`.
Examples
--------
// Standard Usage:
> var x = [ 1.0, -2.0, 3.0, -4.0 ];
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
[ -4.0, -2.0, 1.0, 3.0 ]
// Using an index offset:
> x = [ 1.0, -2.0, 3.0, -4.0 ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}.ndarray( N, 1, x, 2, 1 )
[ 1.0, -4.0, 3.0, -2.0 ]
See Also
--------
|