1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_64_0/boost/math/special_functions/detail/lgamma_small.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006-7, 2013-14.
* (C) Copyright Paul A. Bristow 2007, 2013-14.
* (C) Copyright Nikhar Agrawal 2013-14.
* (C) Copyright Christopher Kormanyos 2013-14.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
'use strict';
// MODULES //
var ln = require( './../../../../base/special/ln' );
var EPS = require( '@stdlib/constants/float64/eps' );
var rateval1 = require( './rational_p1q1.js' );
var rateval2 = require( './rational_p2q2.js' );
var rateval3 = require( './rational_p3q3.js' );
// VARIABLES //
var Y1 = 0.158963680267333984375;
var Y2 = 0.52815341949462890625;
var Y3 = 0.452017307281494140625;
// MAIN //
/**
* Evaluates the natural logarithm of the gamma function for small arguments.
*
* ## Method
*
* 1. For \\( z > 2 \\), begin by performing argument reduction until \\( z \\) is in \\(\[2,3)\\). Use the following form:
*
* ```tex
* \operatorname{gammaln}(z) = (z-2)(z+1)(Y + R(z-2))
* ```
*
* where \\( R(z-2) \\) is a rational approximation optimized for low absolute error. As long as the absolute error is small compared to the constant \\( Y \\), then any rounding error in the computation will get wiped out.
*
* 2. If \\( z < 1 \\), use recurrence to shift to \\( z \\) in the interval \\(\[1,2\]\\). Then, use one of two approximations: one for \\( z \\) in \\(\[1,1.5\]\\) and one for \\( z \\) in \\(\[1.5,2\]\\):
*
* - For \(( z \\) in \\(\[1,1.5\]\\), use
*
* ```tex
* \operatorname{gammaln}(z) = (z-1)(z-2)(Y + R(z-1))
* ```
*
* where \\( R(z-1) \\) is a rational approximation optimized for low absolute error. As long as the absolute error is small compared to the constant \\( Y \\), then any rounding error in the computation will get wiped out.
*
* - For \\( z \\) in \\(\[1.5,2\]\\), use
*
* ```tex
* \operatorname{gammaln}(z) = (2-z)(1-z)(Y + R(2-z))
* ```
*
* where \\( R(2-z) \\) is a rational approximation optimized for low absolute error. As long as the absolute error is small compared to the constant \\( Y \\), then any rounding error in the computation will get wiped out.
*
*
* ## Notes
*
* - Relative error:
*
* | function | peak | maximum deviation |
* |:--------:|:------------:|:-----------------:|
* | R(Z-2) | 4.231e-18 | 5.900e-24 |
* | R(Z-1) | 1.230011e-17 | 3.139e-021 |
* | R(2-Z) | 1.797565e-17 | 2.151e-021 |
*
*
* @private
* @param {number} z - input value
* @param {number} zm1 - `z` minus one
* @param {number} zm2 - `z` minus two
* @returns {number} function value
*/
function lgammaSmallImp( z, zm1, zm2 ) {
var prefix;
var result;
var r;
var R;
if ( z < EPS ) {
return -ln( z );
}
if ( zm1 === 0.0 || zm2 === 0.0 ) {
return 0.0;
}
result = 0.0;
if ( z > 2.0 ) {
if ( z >= 3.0 ) {
do {
z -= 1.0;
zm2 -= 1.0;
result += ln(z);
} while ( z >= 3.0 );
zm2 = z - 2.0;
}
r = zm2 * ( z+1.0 );
R = rateval1( zm2 );
result += ( r*Y1 ) + ( r*R );
return result;
}
if ( z < 1.0 ) {
result += -ln(z);
zm2 = zm1;
zm1 = z;
z += 1.0;
}
if ( z <= 1.5 ) {
r = rateval2( zm1 );
prefix = zm1 * zm2;
result += ( prefix*Y2 ) + ( prefix*r );
return result;
}
// Case: 1.5 < z <= 2
r = zm2 * zm1;
R = rateval3( -zm2 );
result += ( r*Y3 ) + ( r*R );
return result;
}
// EXPORTS //
module.exports = lgammaSmallImp;
|