File: ibeta_series.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (171 lines) | stat: -rw-r--r-- 4,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_64_0/boost/math/special_functions/beta.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/

'use strict';

// MODULES //

var lanczosSumExpGScaled = require( './../../../../base/special/gamma-lanczos-sum-expg-scaled' );
var sumSeries = require( './../../../../base/tools/sum-series' );
var log1p = require( './../../../../base/special/log1p' );
var sqrt = require( './../../../../base/special/sqrt' );
var exp = require( './../../../../base/special/exp' );
var pow = require( './../../../../base/special/pow' );
var ln = require( './../../../../base/special/ln' );
var MIN_VALUE = require( '@stdlib/constants/float64/smallest-normal' );
var MAX_LN = require( '@stdlib/constants/float64/max-ln' );
var MIN_LN = require( '@stdlib/constants/float64/min-ln' );
var G = require( '@stdlib/constants/float64/gamma-lanczos-g' );
var E = require( '@stdlib/constants/float64/e' );


// VARIABLES //

var opts = {
	'maxTerms': 100
};


// FUNCTIONS //

/**
* Series approximation to the incomplete beta.
*
* @private
* @param {NonNegativeNumber} a - function parameter
* @param {NonNegativeNumber} b - function parameter
* @param {Probability} x - function parameter
* @param {number} result - initial result value
* @returns {Function} series function
*/
function ibetaSeriesT( a, b, x, result ) {
	var poch = 1.0 - b;
	var n = 1;
	return next;

	/**
	* Calculate the next term of the series.
	*
	* @private
	* @returns {number} series expansion term
	*/
	function next() {
		var r = result / a;
		a += 1.0;
		result *= poch * x / n;
		n += 1;
		poch += 1.0;
		return r;
	}
}


// MAIN //

/**
* Incomplete beta series.
*
* @private
* @param {NonNegativeNumber} a - function parameter
* @param {NonNegativeNumber} b - function parameter
* @param {Probability} x - function parameter
* @param {NonNegativeInteger} s0 - initial value
* @param {boolean} normalized - boolean indicating whether to evaluate the power terms of the regularized or non-regularized incomplete beta function
* @param {(Array|TypedArray|Object)} out - output array holding the derivative as the second element
* @param {Probability} y - probability equal to `1-x`
* @returns {number} function value
*/
function ibetaSeries( a, b, x, s0, normalized, out, y ) {
	var result;
	var agh;
	var bgh;
	var cgh;
	var l1;
	var l2;
	var c;
	var s;

	if ( normalized ) {
		c = a + b;

		// Incomplete beta power term, combined with the Lanczos approximation:
		agh = a + G - 0.5;
		bgh = b + G - 0.5;
		cgh = c + G - 0.5;
		result = lanczosSumExpGScaled( c ) / ( lanczosSumExpGScaled( a ) * lanczosSumExpGScaled( b ) ); // eslint-disable-line max-len

		l1 = ln( cgh / bgh ) * ( b - 0.5 );
		l2 = ln( x * cgh / agh ) * a;

		// Check for over/underflow in the power terms:
		if (
			l1 > MIN_LN &&
			l1 < MAX_LN &&
			l2 > MIN_LN &&
			l2 < MAX_LN
		) {
			if ( a * b < bgh * 10.0 ) {
				result *= exp( ( b-0.5 ) * log1p( a / bgh ) );
			} else {
				result *= pow( cgh / bgh, b - 0.5 );
			}
			result *= pow( x * cgh / agh, a );
			result *= sqrt( agh / E );

			if ( out ) {
				out[ 1 ] = result * pow( y, b );
			}
		}
		else {
			// We need logs, and this *will* cancel:
			result = ln( result ) + l1 + l2 + ( ( ln( agh ) - 1.0 ) / 2.0 );
			if ( out ) {
				out[ 1 ] = exp( result + ( b * ln( y ) ) );
			}
			result = exp( result );
		}
	}
	else {
		// Non-normalized, just compute the power:
		result = pow( x, a );
	}
	if ( result < MIN_VALUE ) {
		return s0; // Safeguard: series can't cope with denorms.
	}
	s = ibetaSeriesT( a, b, x, result );
	opts.initialValue = s0;
	return sumSeries( s, opts );
}


// EXPORTS //

module.exports = ibetaSeries;