File: pow.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (387 lines) | stat: -rw-r--r-- 10,177 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The following copyright and license were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/s_pow.c}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ```
*/

'use strict';

// MODULES //

var isnan = require( './../../../../base/assert/is-nan' );
var isOdd = require( './../../../../base/assert/is-odd' );
var isInfinite = require( './../../../../base/assert/is-infinite' );
var isInteger = require( './../../../../base/assert/is-integer' );
var sqrt = require( './../../../../base/special/sqrt' );
var abs = require( './../../../../base/special/abs' );
var toWords = require( '@stdlib/number/float64/base/to-words' );
var setLowWord = require( '@stdlib/number/float64/base/set-low-word' );
var uint32ToInt32 = require( '@stdlib/number/uint32/base/to-int32' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var xIsZero = require( './x_is_zero.js' );
var yIsHuge = require( './y_is_huge.js' );
var yIsInfinite = require( './y_is_infinite.js' );
var log2ax = require( './log2ax.js' );
var logx = require( './logx.js' );
var pow2 = require( './pow2.js' );


// VARIABLES //

// 0x7fffffff = 2147483647 => 0 11111111111 11111111111111111111
var ABS_MASK = 0x7fffffff|0; // asm type annotation

// 0x3fefffff = 1072693247 => 0 01111111110 11111111111111111111 => biased exponent: 1022 = -1+1023 => 2^-1
var HIGH_MAX_NEAR_UNITY = 0x3fefffff|0; // asm type annotation

// 0x41e00000 = 1105199104 => 0 10000011110 00000000000000000000 => biased exponent: 1054 = 31+1023 => 2^31
var HIGH_BIASED_EXP_31 = 0x41e00000|0; // asm type annotation

// 0x43f00000 = 1139802112 => 0 10000111111 00000000000000000000 => biased exponent: 1087 = 64+1023 => 2^64
var HIGH_BIASED_EXP_64 = 0x43f00000|0; // asm type annotation

// 0x40900000 = 1083179008 => 0 10000001001 00000000000000000000 => biased exponent: 1033 = 10+1023 => 2^10 = 1024
var HIGH_BIASED_EXP_10 = 0x40900000|0; // asm type annotation

// 0x3ff00000 = 1072693248 => 0 01111111111 00000000000000000000 => biased exponent: 1023 = 0+1023 => 2^0 = 1
var HIGH_BIASED_EXP_0 = 0x3ff00000|0; // asm type annotation

// 0x4090cc00 = 1083231232 => 0 10000001001 00001100110000000000
var HIGH_1075 = 0x4090cc00|0; // asm type annotation

// 0xc090cc00 = 3230714880 => 1 10000001001 00001100110000000000
var HIGH_NEG_1075 = 0xc090cc00>>>0; // asm type annotation

var HIGH_NUM_NONSIGN_BITS = 31|0; // asm type annotation

var HUGE = 1.0e300;
var TINY = 1.0e-300;

// -(1024-log2(ovfl+.5ulp))
var OVT = 8.0085662595372944372e-17;

// High/low words workspace:
var WORDS = [ 0|0, 0|0 ]; // WARNING: not thread safe

// Log workspace:
var LOG_WORKSPACE = [ 0.0, 0.0 ]; // WARNING: not thread safe


// MAIN //

/**
* Evaluates the exponential function.
*
* ## Method
*
* 1.  Let \\(x = 2^n (1+f)\\).
*
* 2.  Compute \\(\operatorname{log2}(x)\\) as
*
*     ```tex
*     \operatorname{log2}(x) = w_1 + w_2
*     ```
*
*     where \\(w_1\\) has \\(53 - 24 = 29\\) bit trailing zeros.
*
* 3.  Compute
*
*     ```tex
*     y \cdot \operatorname{log2}(x) = n + y^\prime
*     ```
*
*     by simulating multi-precision arithmetic, where \\(|y^\prime| \leq 0.5\\).
*
* 4.  Return
*
*     ```tex
*     x^y = 2^n e^{y^\prime \cdot \mathrm{log2}}
*     ```
*
* ## Special Cases
*
* ```tex
* \begin{align*}
* x^{\mathrm{NaN}} &= \mathrm{NaN} & \\
* (\mathrm{NaN})^y &= \mathrm{NaN} & \\
* 1^y &= 1 & \\
* x^0 &= 1 & \\
* x^1 &= x & \\
* (\pm 0)^\infty &= +0 & \\
* (\pm 0)^{-\infty} &= +\infty & \\
* (+0)^y &= +0 & \mathrm{if}\ y > 0 \\
* (+0)^y &= +\infty & \mathrm{if}\ y < 0 \\
* (-0)^y &= -\infty & \mathrm{if}\ y\ \mathrm{is\ an\ odd\ integer\ and}\ y < 0 \\
* (-0)^y &= +\infty & \mathrm{if}\ y\ \mathrm{is\ not\ an\ odd\ integer\ and}\ y < 0 \\
* (-0)^y &= -0 & \mathrm{if}\ y\ \mathrm{is\ an\ odd\ integer\ and}\ y > 0 \\
* (-0)^y &= +0 & \mathrm{if}\ y\ \mathrm{is\ not\ an\ odd\ integer\ and}\ y > 0 \\
* (-1)^{\pm\infty} &= \mathrm{NaN} & \\
* x^{\infty} &= +\infty & |x| > 1 \\
* x^{\infty} &= +0 & |x| < 1 \\
* x^{-\infty} &= +0 & |x| > 1 \\
* x^{-\infty} &= +\infty & |x| < 1 \\
* (-\infty)^y &= (-0)^y & \\
* \infty^y &= +0 & y < 0 \\
* \infty^y &= +\infty & y > 0 \\
* x^y &= \mathrm{NaN} & \mathrm{if}\ y\ \mathrm{is\ not\ a\ finite\ integer\ and}\ x < 0
* \end{align*}
* ```
*
* ## Notes
*
* -   \\(\operatorname{pow}(x,y)\\) returns \\(x^y\\) nearly rounded. In particular, \\(\operatorname{pow}(<\mathrm{integer}>,<\mathrm{integer}>)\\) **always** returns the correct integer, provided the value is representable.
* -   The hexadecimal values shown in the source code are the intended values for used constants. Decimal values may be used, provided the compiler will accurately convert decimal to binary in order to produce the hexadecimal values.
*
*
* @param {number} x - base
* @param {number} y - exponent
* @returns {number} function value
*
* @example
* var v = pow( 2.0, 3.0 );
* // returns 8.0
*
* @example
* var v = pow( 4.0, 0.5 );
* // returns 2.0
*
* @example
* var v = pow( 100.0, 0.0 );
* // returns 1.0
*
* @example
* var v = pow( 3.141592653589793, 5.0 );
* // returns ~306.0197
*
* @example
* var v = pow( 3.141592653589793, -0.2 );
* // returns ~0.7954
*
* @example
* var v = pow( NaN, 3.0 );
* // returns NaN
*
* @example
* var v = pow( 5.0, NaN );
* // returns NaN
*
* @example
* var v = pow( NaN, NaN );
* // returns NaN
*/
function pow( x, y ) {
	var ahx; // absolute value high word `x`
	var ahy; // absolute value high word `y`
	var ax;  // absolute value `x`
	var hx;  // high word `x`
	var lx;  // low word `x`
	var hy;  // high word `y`
	var ly;  // low word `y`
	var sx;  // sign `x`
	var sy;  // sign `y`
	var y1;
	var hp;
	var lp;
	var t;
	var z;   // y prime
	var j;
	var i;
	if ( isnan( x ) || isnan( y ) ) {
		return NaN;
	}
	// Split `y` into high and low words:
	toWords( WORDS, y );
	hy = WORDS[ 0 ];
	ly = WORDS[ 1 ];

	// Special cases `y`...
	if ( ly === 0 ) {
		if ( y === 0.0 ) {
			return 1.0;
		}
		if ( y === 1.0 ) {
			return x;
		}
		if ( y === -1.0 ) {
			return 1.0 / x;
		}
		if ( y === 0.5 ) {
			return sqrt( x );
		}
		if ( y === -0.5 ) {
			return 1.0 / sqrt( x );
		}
		if ( y === 2.0 ) {
			return x * x;
		}
		if ( y === 3.0 ) {
			return x * x * x;
		}
		if ( y === 4.0 ) {
			x *= x;
			return x * x;
		}
		if ( isInfinite( y ) ) {
			return yIsInfinite( x, y );
		}
	}
	// Split `x` into high and low words:
	toWords( WORDS, x );
	hx = WORDS[ 0 ];
	lx = WORDS[ 1 ];

	// Special cases `x`...
	if ( lx === 0 ) {
		if ( hx === 0 ) {
			return xIsZero( x, y );
		}
		if ( x === 1.0 ) {
			return 1.0;
		}
		if (
			x === -1.0 &&
			isOdd( y )
		) {
			return -1.0;
		}
		if ( isInfinite( x ) ) {
			if ( x === NINF ) {
				// `pow( 1/x, -y )`
				return pow( -0.0, -y );
			}
			if ( y < 0.0 ) {
				return 0.0;
			}
			return PINF;
		}
	}
	if (
		x < 0.0 &&
		isInteger( y ) === false
	) {
		// Signal NaN...
		return (x-x)/(x-x);
	}
	ax = abs( x );

	// Remove the sign bits (i.e., get absolute values):
	ahx = (hx & ABS_MASK)|0; // asm type annotation
	ahy = (hy & ABS_MASK)|0; // asm type annotation

	// Extract the sign bits:
	sx = (hx >>> HIGH_NUM_NONSIGN_BITS)|0; // asm type annotation
	sy = (hy >>> HIGH_NUM_NONSIGN_BITS)|0; // asm type annotation

	// Determine the sign of the result...
	if ( sx && isOdd( y ) ) {
		sx = -1.0;
	} else {
		sx = 1.0;
	}
	// Case 1: `|y|` is huge...

	// |y| > 2^31
	if ( ahy > HIGH_BIASED_EXP_31 ) {
		// `|y| > 2^64`, then must over- or underflow...
		if ( ahy > HIGH_BIASED_EXP_64 ) {
			return yIsHuge( x, y );
		}
		// Over- or underflow if `x` is not close to unity...

		if ( ahx < HIGH_MAX_NEAR_UNITY ) {
			// y < 0
			if ( sy === 1 ) {
				// Signal overflow...
				return sx * HUGE * HUGE;
			}
			// Signal underflow...
			return sx * TINY * TINY;
		}
		if ( ahx > HIGH_BIASED_EXP_0 ) {
			// y > 0
			if ( sy === 0 ) {
				// Signal overflow...
				return sx * HUGE * HUGE;
			}
			// Signal underflow...
			return sx * TINY * TINY;
		}
		// At this point, `|1-x|` is tiny (`<= 2^-20`). Suffice to compute `log(x)` by `x - x^2/2 + x^3/3 - x^4/4`.
		t = logx( LOG_WORKSPACE, ax );
	}
	// Case 2: `|y|` is not huge...
	else {
		t = log2ax( LOG_WORKSPACE, ax, ahx );
	}
	// Split `y` into `y1 + y2` and compute `(y1+y2) * (t1+t2)`...
	y1 = setLowWord( y, 0 );
	lp = ( (y-y1)*t[0] ) + ( y*t[1] );
	hp = y1 * t[0];
	z = lp + hp;

	// Note: *can* be more performant to use `getHighWord` and `getLowWord` directly, but using `toWords` looks cleaner.
	toWords( WORDS, z );
	j = uint32ToInt32( WORDS[0] );
	i = uint32ToInt32( WORDS[1] );

	// z >= 1024
	if ( j >= HIGH_BIASED_EXP_10 ) {
		// z > 1024
		if ( ((j-HIGH_BIASED_EXP_10)|i) !== 0 ) {
			// Signal overflow...
			return sx * HUGE * HUGE;
		}
		if ( (lp+OVT) > (z-hp) ) {
			// Signal overflow...
			return sx * HUGE * HUGE;
		}
	}
	// z <= -1075
	else if ( (j&ABS_MASK) >= HIGH_1075 ) {
		// z < -1075
		if ( ((j-HIGH_NEG_1075)|i) !== 0 ) {
			// signal underflow...
			return sx * TINY * TINY;
		}
		if ( lp <= (z-hp) ) {
			// signal underflow...
			return sx * TINY * TINY;
		}
	}
	// Compute `2^(hp+lp)`...
	z = pow2( j, hp, lp );

	return sx * z;
}


// EXPORTS //

module.exports = pow;