1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#!/usr/bin/env python
#
# @license Apache-2.0
#
# Copyright (c) 2018 The Stdlib Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generate fixtures."""
import os
import json
import numpy as np
from scipy.special import eval_hermite
# Get the file path:
FILE = os.path.realpath(__file__)
# Extract the directory in which this file resides:
DIR = os.path.dirname(FILE)
def gen(n, x, name):
"""Generate fixture data and write to file.
# Arguments
* `n`: degree(s)
* `x`: domain
* `name::str`: output filename
# Examples
``` python
python> n = 1
python> x = linspace(-1000, 1000, 2001)
python> gen(n, x, './data.json')
```
"""
y = eval_hermite(n, x)
if isinstance(n, np.ndarray):
data = {
"n": n.tolist(),
"x": x.tolist(),
"expected": y.tolist()
}
else:
data = {
"n": n,
"x": x.tolist(),
"expected": y.tolist()
}
# Based on the script directory, create an output filepath:
filepath = os.path.join(DIR, name)
# Write the data to the output filepath as JSON:
with open(filepath, "w") as outfile:
json.dump(data, outfile)
def main():
"""Generate fixture data."""
# Random values across `n` and `x`:
n = np.random.randint(1, 100, 1000)
x = np.random.random(1000)*100.0
gen(n, x, "random2.json")
# Medium negative:
x = np.linspace(-709.78, -1.0, 1000)
gen(1, x, "medium_negative_1.json")
gen(2, x, "medium_negative_2.json")
gen(5, x, "medium_negative_5.json")
# Medium positive:
x = np.linspace(1.0, 709.78, 1000)
gen(1, x, "medium_positive_1.json")
gen(2, x, "medium_positive_2.json")
gen(5, x, "medium_positive_5.json")
# Small positive:
x = np.linspace(2.0**-54, 1.0, 1000)
gen(1, x, "small_positive_1.json")
gen(2, x, "small_positive_2.json")
gen(5, x, "small_positive_5.json")
# Small negative:
x = np.linspace(-1.0, -2.0**-54, 1000)
gen(1, x, "small_negative_1.json")
gen(2, x, "small_negative_2.json")
gen(5, x, "small_negative_5.json")
# Tiny values:
x = np.linspace(-2.0**-54, 2.0**-54, 1000)
gen(1, x, "tiny_1.json")
gen(2, x, "tiny_2.json")
gen(5, x, "tiny_5.json")
if __name__ == "__main__":
main()
|