1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
/*
* @license Apache-2.0
*
* Copyright (c) 2021 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TypeScript Version: 2.0
/* tslint:disable:max-line-length */
/* tslint:disable:max-file-line-count */
import assert = require( './../../../base/assert' );
import bind2vind = require( './../../../base/bind2vind' );
import broadcastArray = require( './../../../base/broadcast-array' );
import broadcastShapes = require( './../../../base/broadcast-shapes' );
import buffer = require( './../../../base/buffer' );
import bufferCtors = require( './../../../base/buffer-ctors' );
import bufferDataType = require( './../../../base/buffer-dtype' );
import bufferDataTypeEnum = require( './../../../base/buffer-dtype-enum' );
import bytesPerElement = require( './../../../base/bytes-per-element' );
import clampIndex = require( './../../../base/clamp-index' );
import ndarray = require( './../../../base/ctor' );
import dtypeChar = require( './../../../base/dtype-char' );
import dtypes2signatures = require( './../../../base/dtypes2signatures' );
import ind = require( './../../../base/ind' );
import ind2sub = require( './../../../base/ind2sub' );
import iterationOrder = require( './../../../base/iteration-order' );
import maxViewBufferIndex = require( './../../../base/max-view-buffer-index' );
import minViewBufferIndex = require( './../../../base/min-view-buffer-index' );
import minmaxViewBufferIndex = require( './../../../base/minmax-view-buffer-index' );
import nonsingletonDimensions = require( './../../../base/nonsingleton-dimensions' );
import numel = require( './../../../base/numel' );
import serializeMetaData = require( './../../../base/serialize-meta-data' );
import shape2strides = require( './../../../base/shape2strides' );
import singletonDimensions = require( './../../../base/singleton-dimensions' );
import strides2offset = require( './../../../base/strides2offset' );
import strides2order = require( './../../../base/strides2order' );
import sub2ind = require( './../../../base/sub2ind' );
import ndarray2array = require( './../../../base/to-array' );
import vind2bind = require( './../../../base/vind2bind' );
import wrapIndex = require( './../../../base/wrap-index' );
/**
* Interface describing the `base` namespace.
*/
interface Namespace {
/**
* Base ndarray assertion utilities.
*/
assert: typeof assert;
/**
* Converts a linear index in an underlying data buffer to a linear index in an array view.
*
* @param shape - array shape
* @param strides - stride array
* @param offset - location of the first indexed value **based** on the stride array
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @param idx - linear index in an underlying data buffer
* @param mode - specifies how to handle a linear index which exceeds array dimensions
* @throws linear index must not exceed array dimensions
* @returns linear index in an array view
*
* @example
* var shape = [ 3, 3 ];
* var strides = [ -3, 1 ];
* var offset = 6;
* var order = 'row-major';
* var mode = 'throw';
*
* var ind = ns.bind2vind( shape, strides, offset, order, 7, mode );
* // returns 1
*/
bind2vind: typeof bind2vind;
/**
* Broadcasts an ndarray to a specified shape.
*
* ## Notes
*
* - The function throws an error if a provided ndarray is incompatible with a provided shape.
* - The returned array is a view on the input array data buffer. The view is typically **not** contiguous. As more than one element of a returned view may refer to the same memory location, writing to the view may affect multiple elements. If you need to write to the returned array, copy the array before performing operations which may mutate elements.
* - The returned array is a "base" ndarray, and, thus, the returned array does not perform bounds checking or afford any of the guarantees of the non-base ndarray constructor. The primary intent of this function is to broadcast an ndarray-like object within internal implementations and to do so with minimal overhead.
* - The function always returns a new ndarray instance even if the input ndarray shape and the desired shape are the same.
*
* @param arr - input array
* @param shape - desired shape
* @throws input array cannot have more dimensions than the desired shape
* @throws input array dimension sizes must be `1` or equal to the corresponding dimension in the provided shape
* @returns broadcasted array
*
* @example
* var array = require( `@stdlib/ndarray/array` );
*
* var x = array( [ [ 1, 2 ], [ 3, 4 ] ] );
* // returns <ndarray>
*
* var shx = x.shape;
* // returns [ 2, 2 ]
*
* var y = ns.broadcastArray( x, [ 3, 2, 2 ] );
* // returns <ndarray>
*
* var shy = y.shape;
* // returns [ 3, 2, 2 ]
*
* var v = y.get( 0, 0, 0 );
* // returns 1
*
* v = y.get( 0, 0, 1 );
* // returns 2
*
* v = y.get( 1, 0, 0 );
* // returns 1
*
* v = y.get( 1, 1, 0 );
* // returns 3
*
* v = y.get( 2, 0, 0 );
* // returns 1
*
* v = y.get( 2, 1, 1 );
* // returns 4
*/
broadcastArray: typeof broadcastArray;
/**
* Broadcasts array shapes to a single shape.
*
* ## Notes
*
* - Two respective dimensions in two shape arrays are compatible if
*
* 1. the dimensions are equal.
* 2. one dimension is `1`.
*
* - The function returns `null` if provided incompatible shapes (i.e., shapes which cannot be broadcast with one another).
*
* @param shapes - array shapes
* @returns broadcast shape
*
* @example
* var shapes = [
* [ 8, 1, 6, 1 ],
* [ 7, 1, 5 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 8, 7, 6, 5 ]
*
* @example
* var shapes = [
* [ 5, 4 ],
* [ 1 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 5, 4 ]
*
* @example
* var shapes = [
* [ 5, 4 ],
* [ 4 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 5, 4 ]
*
* @example
* var shapes = [
* [ 15, 3, 5 ],
* [ 15, 1, 5 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 15, 3, 5 ]
*
* @example
* var shapes = [
* [ 15, 3, 5 ],
* [ 3, 5 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 15, 3, 5 ]
*
* @example
* var shapes = [
* [ 15, 3, 5 ],
* [ 3, 1 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 15, 3, 5 ]
*
* @example
* var shapes = [
* [ 8, 1, 1, 6, 1 ],
* [ 1, 7, 1, 5 ],
* [ 8, 4, 1, 6, 5 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 8, 4, 7, 6, 5 ]
*
* @example
* var shapes = [
* [ 8, 1, 1, 6, 1 ],
* [ 0 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 8, 1, 1, 6, 0 ]
*
* @example
* var shapes = [
* [ 8, 1, 1, 6, 1 ],
* [ 8, 0, 1, 6, 1 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 8, 0, 1, 6, 1 ]
*
* @example
* var shapes = [
* [ 8, 8, 1, 6, 1 ],
* [ 8, 0, 1, 6, 1 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns null
*
* @example
* var shapes = [
* []
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns []
*
* @example
* var shapes = [
* [],
* []
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns []
*
* @example
* var shapes = [];
*
* var out = ns.broadcastShapes( shapes );
* // returns []
*
* @example
* var shapes = [
* [ 3, 2, 1 ],
* []
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 3, 2, 1 ]
*
* @example
* var shapes = [
* [],
* [ 3, 2, 1 ]
* ];
*
* var out = ns.broadcastShapes( shapes );
* // returns [ 3, 2, 1 ]
*/
broadcastShapes: typeof broadcastShapes;
/**
* Returns a zero-filled contiguous linear ndarray data buffer.
*
* @param dtype - data type
* @param size - buffer size
* @returns data buffer
*
* @example
* var buf = ns.buffer( 'float64', 3 );
* // returns <Float64Array>[ 0.0, 0.0, 0.0 ]
*/
buffer: typeof buffer;
/**
* Returns an ndarray data buffer constructor.
*
* @param dtype - data type
* @returns data buffer constructor or null
*
* @example
* var ctor = ns.bufferCtors( 'float64' );
* // returns <Function>
*
* @example
* var ctor = ns.bufferCtors( 'float' );
* // returns null
*/
bufferCtors: typeof bufferCtors;
/**
* Returns the data type of an ndarray data buffer.
*
* @param value - input value
* @returns data type
*
* @example
* var dt = ns.bufferDataType( [ 1, 2, 3 ] );
* // returns 'generic'
*
* var dt = ns.bufferDataType( 'beep' );
* // returns null
*/
bufferDataType: typeof bufferDataType;
/**
* Returns the data type enumeration constant for a provided ndarray data buffer.
*
* @param arr - strided array
* @returns data type enumeration constant or null
*
* @example
* var Float64Array = require( `@stdlib/array/float64` );
*
* var x = new Float64Array( 10 );
*
* var c = ns.bufferDataTypeEnum( x );
* // returns <number>
*/
bufferDataTypeEnum: typeof bufferDataTypeEnum;
/**
* Returns the number of bytes per element provided an underlying array data type.
*
* @param dtype - data type
* @returns number of bytes per element
*
* @example
* var nbytes = ns.bytesPerElement( 'float64' );
* // returns 8
*
* nbytes = ns.bytesPerElement( 'generic' );
* // returns null
*/
bytesPerElement: typeof bytesPerElement;
/**
* Restricts an index to the interval `[0,max]`.
*
* @param idx - index
* @param max - maximum index
* @returns index
*
* @example
* var idx = ns.clampIndex( -1, 10 );
* // returns 0
*
* idx = ns.clampIndex( 15, 10 );
* // returns 10
*
* idx = ns.clampIndex( 5, 10 );
* // returns 5
*/
clampIndex: typeof clampIndex;
/**
* ndarray constructor.
*
* ## Notes
*
* - To create a zero-dimensional array,
*
* ```javascript
* var buffer = [ 1 ];
* var shape = [];
* var strides = [ 0 ];
* var offset = 0;
*
* var out = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
* ```
*
* @param dtype - data type
* @param buffer - data buffer
* @param shape - array shape
* @param strides - array strides
* @param offset - index offset
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @returns ndarray instance
*
* @example
* var buffer = [ 1, 2, 3, 4, 5, 6 ];
* var shape = [ 3, 2 ];
* var strides = [ 2, 1 ];
* var offset = 0;
*
* var out = ns.ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
*/
ndarray: typeof ndarray;
/**
* Returns the single letter character abbreviation for an underlying array data type.
*
* @param dtype - data type
* @returns single letter character abbreviation
*
* @example
* var ch = ns.dtypeChar( 'float64' );
* // returns 'd'
*
* ch = ns.dtypeChar( 'generic' );
* // returns 'o'
*/
dtypeChar: typeof dtypeChar;
/**
* Transforms a list of array argument data types into a list of signatures.
*
* @param dtypes - list of array argument data types
* @param nin - number of input array arguments
* @param nout - number of output array arguments
* @throws first argument must be an array-like object containing strings
* @throws second argument must be a nonnegative integer
* @throws third argument must be a nonnegative integer
* @throws first argument must have at least one element
* @throws first argument must be compatible with second and third arguments
* @returns list of signatures
*
* @example
* var dtypes = [
* 'float64', 'float64',
* 'float32', 'float32'
* ];
*
* var sigs = ns.dtypes2signatures( dtypes, 1, 1 );
* // returns [ '(float64) => (float64)', '(float32) => (float32)' ]
*/
dtypes2signatures: typeof dtypes2signatures;
/**
* Returns an index given an index mode.
*
* @param idx - index
* @param max - maximum index
* @param mode - specifies how to handle an index outside the interval `[0,max]`
* @throws index out-of-bounds
* @returns index
*
* @example
* var idx = ns.ind( 2, 9, 'clamp' );
* // returns 2
*
* idx = ns.ind( 10, 9, 'clamp' );
* // returns 9
*
* idx = ns.ind( -1, 9, 'clamp' );
* // returns 0
*
* @example
* var idx = ns.ind( 2, 9, 'wrap' );
* // returns 2
*
* idx = ns.ind( 10, 9, 'wrap' );
* // returns 0
*
* idx = ns.ind( -1, 9, 'wrap' );
* // returns 9
*
* @example
* var idx = ns.ind( 2, 9, 'throw' );
* // returns 2
*
* idx = ns.ind( 10, 9, 'throw' );
* // throws <RangeError>
*
* idx = ns.ind( -1, 9, 'throw' );
* // throws <RangeError>
*/
ind: typeof ind;
/**
* Converts a linear index to an array of subscripts.
*
* ## Notes
*
* - The function accepts the following "modes":
*
* - `throw`: throws an error when a linear index exceeds array dimensions.
* - `wrap`: wrap around a linear index exceeding array dimensions using modulo arithmetic.
* - `clamp`: set a linear index exceeding array dimensions to either `0` (minimum linear index) or the maximum linear index.
*
* - When provided a stride array containing negative strides, if an `offset` is greater than `0`, the function interprets the linear index as an index into the underlying data buffer for the array, thus returning subscripts from the perspective of that buffer. If an `offset` is equal to `0`, the function treats the linear index as an index into an array view, thus returning subscripts from the perspective of that view.
*
* ```text
* Dims: 2x2
* Buffer: [ 1, 2, 3, 4 ]
*
* View = [ a00, a01,
* a10, a11 ]
*
* Strides: 2,1
* Offset: 0
*
* View = [ 1, 2,
* 3, 4 ]
*
* Strides: 2,-1
* Offset: 1
*
* View = [ 2, 1,
* 4, 3 ]
*
* Strides: -2,1
* Offset: 2
*
* View = [ 3, 4,
* 1, 2 ]
*
* Strides: -2,-1
* Offset: 3
*
* View = [ 4, 3,
* 2, 1 ]
* ```
*
* ```javascript
* var shape = [ 2, 2 ];
* var order = 'row-major';
* var strides = [ -2, 1 ];
* var offset = 2;
* var mode = 'throw';
*
* // From the perspective of a view...
* var s = ind2sub( shape, strides, 0, order, 0, mode );
* // returns [ 0, 0 ]
*
* s = ind2sub( shape, strides, 0, order, 1, mode );
* // returns [ 0, 1 ]
*
* s = ind2sub( shape, strides, 0, order, 2, mode );
* // returns [ 1, 0 ]
*
* s = ind2sub( shape, strides, 0, order, 3, mode );
* // returns [ 1, 1 ]
*
* // From the perspective of an underlying buffer...
* s = ind2sub( shape, strides, offset, order, 0, mode );
* // returns [ 1, 0 ]
*
* s = ind2sub( shape, strides, offset, order, 1, mode );
* // returns [ 1, 1 ]
*
* s = ind2sub( shape, strides, offset, order, 2, mode );
* // returns [ 0, 0 ]
*
* s = ind2sub( shape, strides, offset, order, 3, mode );
* // returns [ 0, 1 ]
* ```
*
* In short, from the perspective of a view, view data is always ordered.
*
*
* @param shape - array shape
* @param strides - stride array
* @param offset - location of the first indexed value **based** on the stride array
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @param idx - linear index
* @param mode - specifies how to handle a linear index which exceeds array dimensions
* @throws linear index must not exceed array dimensions
* @returns subscripts
*
* @example
* var shape = [ 3, 3, 3 ];
* var strides = [ 9, 6, 1 ];
* var offset = 0;
* var order = 'row-major';
*
* var s = ns.ind2sub( shape, strides, offset, order, 17, 'throw' );
* // returns [ 1, 2, 2 ]
*/
ind2sub: typeof ind2sub;
/**
* Returns array iteration order.
*
* ## Notes
*
* - Return value key:
*
* - `0`: unordered (i.e., strides of mixed sign; e.g., `[ 9, -3, 1 ]`)
* - `1`: ordered left-to-right (i.e., all nonnegative strides)
* - `-1`: ordered right-to-left (i.e., all negative strides)
*
* @param strides - stride array
* @returns iteration order
*
* @example
* var o = ns.iterationOrder( [ 2, 1 ] );
* // returns 1
*
* o = ns.iterationOrder( [ -2, 1 ] );
* // returns 0
*
* o = ns.iterationOrder( [ -2, -1 ] );
* // returns -1
*/
iterationOrder: typeof iterationOrder;
/**
* Computes the maximum linear index in an underlying data buffer accessible to an array view.
*
* @param shape - array shape
* @param strides - stride array
* @param offset - index offset
* @returns linear index
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 10, 1 ];
* var offset = 0;
*
* var idx = ns.maxViewBufferIndex( shape, strides, offset );
* // returns 99
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -10, -1 ];
* var offset = 99;
*
* var idx = ns.maxViewBufferIndex( shape, strides, offset );
* // returns 99
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 1, 10 ];
* var offset = 0;
*
* var idx = ns.maxViewBufferIndex( shape, strides, offset );
* // returns 99
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -1, -10 ];
* var offset = 99;
*
* var idx = ns.maxViewBufferIndex( shape, strides, offset );
* // returns 99
*/
maxViewBufferIndex: typeof maxViewBufferIndex;
/**
* Computes the minimum linear index in an underlying data buffer accessible to an array view.
*
* @param shape - array shape
* @param strides - stride array
* @param offset - index offset
* @returns linear index
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 10, 1 ];
* var offset = 10;
*
* var idx = ns.minViewBufferIndex( shape, strides, offset );
* // returns 10
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -10, -1 ];
* var offset = 109;
*
* var idx = ns.minViewBufferIndex( shape, strides, offset );
* // returns 10
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 1, 10 ];
* var offset = 10;
*
* var idx = ns.minViewBufferIndex( shape, strides, offset );
* // returns 10
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -1, -10 ];
* var offset = 109;
*
* var idx = ns.minViewBufferIndex( shape, strides, offset );
* // returns 10
*/
minViewBufferIndex: typeof minViewBufferIndex;
/**
* Computes the minimum and maximum linear indices in an underlying data buffer which are accessible to an array view.
*
* @param shape - array shape
* @param strides - stride array
* @param offset - index offset
* @returns linear indices
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 10, 1 ];
* var offset = 10;
*
* var idx = ns.minmaxViewBufferIndex( shape, strides, offset );
* // returns [ 10, 109 ]
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -10, -1 ];
* var offset = 99;
*
* var idx = ns.minmaxViewBufferIndex( shape, strides, offset );
* // returns [ 0, 99 ]
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ 1, 10 ];
* var offset = 10;
*
* var idx = ns.minmaxViewBufferIndex( shape, strides, offset );
* // returns [ 10, 109 ]
*
* @example
* var shape = [ 10, 10 ];
* var strides = [ -1, -10 ];
* var offset = 99;
*
* var idx = ns.minmaxViewBufferIndex( shape, strides, offset );
* // returns [ 0, 99 ]
*/
minmaxViewBufferIndex: typeof minmaxViewBufferIndex;
/**
* Returns the number of non-singleton dimensions.
*
* ## Notes
*
* - A singleton dimension is a dimension whose size is equal to `1`.
*
* @param shape - array shape
* @returns number of non-singleton dimensions
*
* @example
* var n = ns.nonsingletonDimensions( [ 3, 3, 1, 2 ] );
* // returns 3
*
* @example
* var n = ns.nonsingletonDimensions( [ 1, 1 ] );
* // returns 0
*/
nonsingletonDimensions: typeof nonsingletonDimensions;
/**
* Returns the number of elements in an array.
*
* @param shape - array shape
* @returns number of elements
*
* @example
* var n = ns.numel( [ 3, 3, 3 ] );
* // returns 27
*/
numel: typeof numel;
/**
* Serializes ndarray meta data.
*
* ## Notes
*
* - Serialization is performed according to host byte order (endianness).
*
* - Meta data format:
*
* ```text
* | <endianness> (1 byte) | <dtype> (2 bytes) | <ndims> (8 bytes) | <shape> (ndims*8 bytes) | <strides> (ndims*8 bytes) | <offset> (8 bytes) | <order> (1 byte) | <mode> (1 byte) | <nsubmodes> (8 bytes) | <submodes> (nsubmodes*1 bytes) |
* ```
*
* which translates to the following `ArrayBuffer` layout:
*
* ```text
* ArrayBuffer[
* <endianness>[int8],
* <dtype>[int16],
* <ndims>[int64],
* <shape>[ndims*int64],
* <strides>[ndims*int64],
* <offset>[int64],
* <order>[int8],
* <mode>[int8],
* <nsubmodes>[int64],
* <submodes>[nsubmodes*int8]
* ]
* ```
*
* where `strides` and `offset` are in units of bytes.
*
* - If the endianness is `1`, the byte order is little endian. If the endianness is `0`, the byte order is big endian.
*
* - Buffer length:
*
* ```text
* 1 + 2 + 8 + (ndims*8) + (ndims*8) + 8 + 1 + 1 + 8 + (nsubmodes*1) = 29 + (ndims*16) + nsubmodes
* ```
*
* For example, consider a three-dimensional ndarray with one subscript index mode (submode):
*
* ```text
* 29 + (3*16) + 1 = 78 bytes
* ```
*
* - Views:
*
* - endianness: `Int8Array( buf, 0, 1 )`
* - dtype: `Int16Array( buf, 1, 1 )`
* - ndims: `Int64Array( buf, 3, 1 )`
* - shape: `Int64Array( buf, 11, ndims )`
* - strides: `Int64Array( buf, 11+(ndims*8), ndims )`
* - offset: `Int64Array( buf, 11+(ndims*16), 1 )`
* - order: `Int8Array( buf, 19+(ndims*16), 1 )`
* - mode: `Int8Array( buf, 20+(ndims*16), 1 )`
* - nsubmodes: `Int64Array( buf, 21+(ndims*16), 1 )`
* - submodes: `Int8Array( buf, 29+(ndims*16), nsubmodes )`
*
* @param x - input ndarray
* @returns serialized meta data
*
* @example
* var array = require( `@stdlib/ndarray/array` );
*
* var x = array( [ [ 1, 2 ], [ 3, 4 ] ] );
*
* var dv = ns.serializeMetaData( x );
* // returns <DataView>
*/
serializeMetaData: typeof serializeMetaData;
/**
* Generates a stride array from an array shape.
*
* @param shape - array shape
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @returns array strides
*
* @example
* var s = ns.shape2strides( [ 3, 2 ], 'row-major' );
* // returns [ 2, 1 ]
*
* s = ns.shape2strides( [ 3, 2 ], 'column-major' );
* // returns [ 1, 3 ]
*/
shape2strides: typeof shape2strides;
/**
* Returns the number of singleton dimensions.
*
* ## Notes
*
* - A singleton dimension is a dimension whose size is equal to `1`.
*
* @param shape - array shape
* @returns number of singleton dimensions
*
* @example
* var n = ns.singletonDimensions( [ 3, 3, 1, 2 ] );
* // returns 1
*
* @example
* var n = ns.singletonDimensions( [ 2, 2 ] );
* // returns 0
*/
singletonDimensions: typeof singletonDimensions;
/**
* Returns the index offset which specifies the location of the first indexed value in a multidimensional array based on a stride array.
*
* @param shape - array shape
* @param strides - stride array
* @returns offset
*
* @example
* var shape = [ 2, 3, 10 ];
* var strides = [ 30, -10, 1 ];
*
* var offset = ns.strides2offset( shape, strides );
* // returns 20
*/
strides2offset: typeof strides2offset;
/**
* Determines the order of a multidimensional array based on a provided stride array.
*
* @param strides - stride array
* @returns order
*
* @example
* var order = ns.strides2order( [ 2, 1 ] );
* // returns 1
*
* @example
* var order = ns.strides2order( [ 1, 2 ] );
* // returns 2
*
* @example
* var order = ns.strides2order( [ 1, 1, 1 ] );
* // returns 3
*
* @example
* var order = ns.strides2order( [ 2, 3, 1 ] );
* // returns 0
*/
strides2order: typeof strides2order;
/**
* Converts subscripts to a linear index.
*
* ## Notes
*
* - The function accepts the following "modes":
*
* - `throw`: throws an error when a subscript exceeds array dimensions.
* - `wrap`: wrap around subscripts exceeding array dimensions using modulo arithmetic.
* - `clamp`: set subscripts exceeding array dimensions to either `0` (minimum index) or the maximum index along a particular dimension.
*
* - When provided fewer modes than dimensions, the function recycles modes using modulo arithmetic.
*
* - When provided a stride array containing negative strides, if an `offset` is greater than `0`, the function treats subscripts as mapping to a linear index in an underlying data buffer for the array, thus returning a linear index from the perspective of that buffer. If an `offset` is equal to `0`, the function treats subscripts as mapping to a linear index in an array view, thus returning a linear index from the perspective of that view.
*
* ```text
* Dims: 2x2
* Buffer: [ 1, 2, 3, 4 ]
*
* View = [ a00, a01,
* a10, a11 ]
*
* Strides: 2,1
* Offset: 0
*
* View = [ 1, 2,
* 3, 4 ]
*
* Strides: 2,-1
* Offset: 1
*
* View = [ 2, 1,
* 4, 3 ]
*
* Strides: -2,1
* Offset: 2
*
* View = [ 3, 4,
* 1, 2 ]
*
* Strides: -2,-1
* Offset: 3
*
* View = [ 4, 3,
* 2, 1 ]
* ```
*
* ```javascript
* var shape = [ 2, 2 ];
* var strides = [ -2, 1 ];
* var offset = 2;
* var mode = [ 'throw' ];
*
* // From the perspective of a view...
* var idx = sub2ind( shape, strides, 0, 0, 0, mode );
* // returns 0
*
* idx = sub2ind( shape, strides, 0, 0, 1, mode );
* // returns 1
*
* idx = sub2ind( shape, strides, 0, 1, 0, mode );
* // returns 2
*
* idx = sub2ind( shape, strides, 0, 1, 1, mode );
* // returns 3
*
* // From the perspective of an underlying buffer...
* idx = sub2ind( shape, strides, offset, 0, 0, mode );
* // returns 2
*
* idx = sub2ind( shape, strides, offset, 0, 1, mode );
* // returns 3
*
* idx = sub2ind( shape, strides, offset, 1, 0, mode );
* // returns 0
*
* idx = sub2ind( shape, strides, offset, 1, 1, mode );
* // returns 1
* ```
*
* In short, from the perspective of a view, view data is always ordered.
*
*
* @param shape - array shape
* @param strides - stride array
* @param offset - location of the first indexed value **based** on the stride array
* @param args - subscripts followed by a `mode` specifying how to handle subscripts which exceed array dimensions
* @param mode - specifies how to handle subscripts which exceed array dimensions
* @throws must provide subscripts which do not exceed array dimensions
* @returns linear index
*
* @example
* var shape = [ 3, 3, 3 ];
* var strides = [ 9, 3, 1 ];
* var offset = 0;
* var mode = [ 'throw' ]
*
* var idx = ns.sub2ind( shape, strides, offset, 1, 2, 2, mode );
* // returns 17
*/
sub2ind: typeof sub2ind;
/**
* Converts an ndarray buffer to a generic array (which may include nested arrays).
*
* @param buffer - data buffer
* @param shape - array shape
* @param strides - array strides
* @param offset - index offset
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @returns array (which may include nested arrays)
*
* @example
* var buffer = [ 1, 2, 3, 4 ];
* var shape = [ 2, 2 ];
* var order = 'row-major';
* var strides = [ 2, 1 ];
* var offset = 0;
*
* var out = ns.ndarray2array( buffer, shape, strides, offset, order );
* // returns [ [ 1, 2 ], [ 3, 4 ] ]
*/
ndarray2array: typeof ndarray2array;
/**
* Converts a linear index in an array view to a linear index in an underlying data buffer.
*
* @param shape - array shape
* @param strides - stride array
* @param offset - location of the first indexed value **based** on the stride array
* @param order - specifies whether an array is row-major (C-style) or column-major (Fortran-style)
* @param idx - linear index in an array view
* @param mode - specifies how to handle a linear index which exceeds array dimensions
* @throws linear index must not exceed array dimensions
* @returns linear index in an underlying data buffer
*
* @example
* var shape = [ 3, 3 ];
* var strides = [ -3, 1 ];
* var offset = 6;
* var order = 'row-major';
* var mode = 'throw';
*
* var ind = ns.vind2bind( shape, strides, offset, order, 1, mode );
* // returns 7
*/
vind2bind: typeof vind2bind;
/**
* Wraps an index on the interval `[0,max]`.
*
* @param idx - index
* @param max - maximum index
* @returns index
*
* @example
* var idx = ns.wrapIndex( -1, 10 );
* // returns 10
*
* idx = ns.wrapIndex( 13, 10 );
* // returns 2
*
* idx = ns.wrapIndex( 6, 10 );
* // returns 6
*/
wrapIndex: typeof wrapIndex;
}
/**
* Base ndarray.
*/
declare var ns: Namespace;
// EXPORTS //
export = ns;
|