1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var tape = require( 'tape' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var abs = require( '@stdlib/math/base/special/abs' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var EPS = require( '@stdlib/constants/float64/eps' );
var mgf = require( './../lib' );
// FIXTURES //
var positiveMean = require( './fixtures/julia/positive_mean.json' );
var negativeMean = require( './fixtures/julia/negative_mean.json' );
var largeVariance = require( './fixtures/julia/large_variance.json' );
// TESTS //
tape( 'main export is a function', function test( t ) {
t.ok( true, __filename );
t.equal( typeof mgf, 'function', 'main export is a function' );
t.end();
});
tape( 'if provided `NaN` for any parameter, the function returns `NaN`', function test( t ) {
var y = mgf( NaN, 0.0, 1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 0.0, NaN, 1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 0.0, 1.0, NaN );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'if provided a negative `s`, the function returns `NaN`', function test( t ) {
var y;
y = mgf( 2.0, 2.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 0.0, 2.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 2.0, 1.0, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 2.0, PINF, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 2.0, NINF, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = mgf( 2.0, NaN, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'the function evaluates the MGF for `x` given positive `mu`', function test( t ) {
var expected;
var delta;
var tol;
var mu;
var x;
var s;
var y;
var i;
expected = positiveMean.expected;
x = positiveMean.x;
mu = positiveMean.mu;
s = positiveMean.s;
for ( i = 0; i < x.length; i++ ) {
y = mgf( x[i], mu[i], s[i] );
if ( expected[i] !== null) {
if ( y === expected[i] ) {
t.equal( y, expected[i], 'x: '+x[i]+', mu: '+mu[i]+', s: '+s[i]+', y: '+y+', expected: '+expected[i] );
} else {
delta = abs( y - expected[ i ] );
tol = 2.0 * EPS * abs( expected[ i ] );
t.ok( delta <= tol, 'within tolerance. x: '+x[ i ]+'. mu: '+mu[i]+'. s: '+s[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
}
}
}
t.end();
});
tape( 'the function evaluates the MGF for `x` given negative `mu`', function test( t ) {
var expected;
var delta;
var tol;
var mu;
var x;
var s;
var y;
var i;
expected = negativeMean.expected;
x = negativeMean.x;
mu = negativeMean.mu;
s = negativeMean.s;
for ( i = 0; i < x.length; i++ ) {
y = mgf( x[i], mu[i], s[i] );
if ( expected[i] !== null ) {
if ( y === expected[i] ) {
t.equal( y, expected[i], 'x: '+x[i]+', mu: '+mu[i]+', s: '+s[i]+', y: '+y+', expected: '+expected[i] );
} else {
delta = abs( y - expected[ i ] );
tol = 2.0 * EPS * abs( expected[ i ] );
t.ok( delta <= tol, 'within tolerance. x: '+x[ i ]+'. mu: '+mu[i]+'. s: '+s[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
}
}
}
t.end();
});
tape( 'the function evaluates the MGF for `x` given large variance ( = large `s` )', function test( t ) {
var expected;
var delta;
var tol;
var mu;
var x;
var s;
var y;
var i;
expected = largeVariance.expected;
x = largeVariance.x;
mu = largeVariance.mu;
s = largeVariance.s;
for ( i = 0; i < x.length; i++ ) {
y = mgf( x[i], mu[i], s[i] );
if ( expected[i] !== null ) {
if ( y === expected[i] ) {
t.equal( y, expected[i], 'x: '+x[i]+', mu: '+mu[i]+', s: '+s[i]+', y: '+y+', expected: '+expected[i] );
} else {
delta = abs( y - expected[ i ] );
tol = 2.0 * EPS * abs( expected[ i ] );
t.ok( delta <= tol, 'within tolerance. x: '+x[ i ]+'. mu: '+mu[i]+'. s: '+s[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
}
}
}
t.end();
});
|