1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var tape = require( 'tape' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var abs = require( '@stdlib/math/base/special/abs' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var EPS = require( '@stdlib/constants/float64/eps' );
var variance = require( './../lib' );
// FIXTURES //
var data = require( './fixtures/julia/data.json' );
// TESTS //
tape( 'main export is a function', function test( t ) {
t.ok( true, __filename );
t.equal( typeof variance, 'function', 'main export is a function' );
t.end();
});
tape( 'if provided `NaN` for any parameter, the function returns `NaN`', function test( t ) {
var y = variance( NaN, 1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( 1.0, NaN );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'if provided a nonpositive `s`, the function returns `NaN`', function test( t ) {
var y;
y = variance( 2.0, 0.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( 2.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( 2.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( 1.0, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( PINF, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( NINF, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
y = variance( NaN, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'the function returns the variance of a logistic distribution', function test( t ) {
var expected;
var delta;
var tol;
var mu;
var s;
var y;
var i;
expected = data.expected;
mu = data.mu;
s = data.s;
for ( i = 0; i < mu.length; i++ ) {
y = variance( mu[i], s[i] );
if ( expected[i] !== null) {
if ( y === expected[i] ) {
t.equal( y, expected[i], 'mu:'+mu[i]+', s: '+s[i]+', y: '+y+', expected: '+expected[i] );
} else {
delta = abs( y - expected[ i ] );
tol = 2.0 * EPS * abs( expected[ i ] );
t.ok( delta <= tol, 'within tolerance. mu: '+mu[i]+'. s: '+s[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
}
}
}
t.end();
});
|