File: test.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (105 lines) | stat: -rw-r--r-- 2,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var tape = require( 'tape' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var abs = require( '@stdlib/math/base/special/abs' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var EPS = require( '@stdlib/constants/float64/eps' );
var variance = require( './../lib' );


// FIXTURES //

var data = require( './fixtures/julia/data.json' );


// TESTS //

tape( 'main export is a function', function test( t ) {
	t.ok( true, __filename );
	t.equal( typeof variance, 'function', 'main export is a function' );
	t.end();
});

tape( 'if provided `NaN` for any parameter, the function returns `NaN`', function test( t ) {
	var y = variance( NaN, 1.0 );
	t.equal( isnan( y ), true, 'returns NaN' );
	y = variance( 1.0, NaN );
	t.equal( isnan( y ), true, 'returns NaN' );
	t.end();
});

tape( 'if provided a nonpositive `s`, the function returns `NaN`', function test( t ) {
	var y;

	y = variance( 2.0, 0.0 );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( 2.0, -1.0 );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( 2.0, -1.0 );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( 1.0, NINF );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( PINF, NINF );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( NINF, NINF );
	t.equal( isnan( y ), true, 'returns NaN' );

	y = variance( NaN, NINF );
	t.equal( isnan( y ), true, 'returns NaN' );

	t.end();
});

tape( 'the function returns the variance of a logistic distribution', function test( t ) {
	var expected;
	var delta;
	var tol;
	var mu;
	var s;
	var y;
	var i;

	expected = data.expected;
	mu = data.mu;
	s = data.s;
	for ( i = 0; i < mu.length; i++ ) {
		y = variance( mu[i], s[i] );
		if ( expected[i] !== null) {
			if ( y === expected[i] ) {
				t.equal( y, expected[i], 'mu:'+mu[i]+', s: '+s[i]+', y: '+y+', expected: '+expected[i] );
			} else {
				delta = abs( y - expected[ i ] );
				tol = 2.0 * EPS * abs( expected[ i ] );
				t.ok( delta <= tol, 'within tolerance. mu: '+mu[i]+'. s: '+s[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
			}
		}
	}
	t.end();
});