File: repl.txt

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (80 lines) | stat: -rw-r--r-- 1,680 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

{{alias}}( x, μ, σ )
    Evaluates the natural logarithm of the probability density function (PDF)
    for a lognormal distribution with location parameter `μ` and scale parameter
    `σ` at a value `x`.

    If provided `NaN` as any argument, the function returns `NaN`.

    If provided `σ <= 0`, the function returns `NaN`.

    Parameters
    ----------
    x: number
        Input value.

    μ: number
        Location parameter.

    σ: number
        Scale parameter.

    Returns
    -------
    out: number
        Evaluated logPDF.

    Examples
    --------
    > var y = {{alias}}( 2.0, 0.0, 1.0 )
    ~-1.852
    > y = {{alias}}( 1.0, 0.0, 1.0 )
    ~-0.919
    > y = {{alias}}( 1.0, 3.0, 1.0 )
    ~-5.419
    > y = {{alias}}( -1.0, 4.0, 2.0 )
    -Infinity

    > y = {{alias}}( NaN, 0.0, 1.0 )
    NaN
    > y = {{alias}}( 0.0, NaN, 1.0 )
    NaN
    > y = {{alias}}( 0.0, 0.0, NaN )
    NaN

    // Non-positive scale parameter `σ`:
    > y = {{alias}}( 2.0, 0.0, -1.0 )
    NaN
    > y = {{alias}}( 2.0, 0.0, 0.0 )
    NaN


{{alias}}.factory( μ, σ )
    Returns a function for evaluating the natural logarithm of the probability
    density function (PDF) of a lognormal distribution with location parameter
    `μ` and scale parameter `σ`.

    Parameters
    ----------
    μ: number
        Location parameter.

    σ: number
        Scale parameter.

    Returns
    -------
    logpdf: Function
        Logarithm of probability density function (PDF).

    Examples
    --------
    > var mylogPDF = {{alias}}.factory( 4.0, 2.0 );
    > var y = mylogPDF( 10.0 )
    ~-4.275
    > y = mylogPDF( 2.0 )
    ~-3.672

    See Also
    --------