1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#!/usr/bin/env julia
#
# @license Apache-2.0
#
# Copyright (c) 2018 The Stdlib Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import Distributions: mode, NegativeBinomial
import JSON
"""
gen( r, p, name )
Generate fixture data and write to file.
# Arguments
* `x`: input value
* `r`: number of failures until experiment is stopped
* `p`: success probability
* `name::AbstractString`: output filename
# Examples
``` julia
julia> r = round.( rand( 1000 ) .* 20 );
julia> p = rand( 1000 );
julia> gen( r, p, \"data.json\" );
```
"""
function gen( r, p, name )
z = Array{Float64}( undef, length(p) );
for i in eachindex(p)
z[ i ] = mode( NegativeBinomial( r[ i ], p[ i ] ) );
end
# Store data to be written to file as a collection:
data = Dict([
("r", r),
("p", p),
("expected", z)
]);
# Based on the script directory, create an output filepath:
filepath = joinpath( dir, name );
# Write the data to the output filepath as JSON:
outfile = open( filepath, "w" );
write( outfile, JSON.json(data) );
close( outfile );
end
# Get the filename:
file = @__FILE__;
# Extract the directory in which this file resides:
dir = dirname( file );
# Generate fixtures:
r = round.( Int, ( rand( 200 ) .* 100.0 ) .+ 1.0 );
p = rand( 200 );
gen( r, p, "data.json" );
|