1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
#!/usr/bin/env python
#
# @license Apache-2.0
#
# Copyright (c) 2018 The Stdlib Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generate fixtures."""
import os
import json
import numpy as np
from numpy.random import rand
from scipy.stats import norm
# Get the file path:
FILE = os.path.realpath(__file__)
# Extract the directory in which this file resides:
DIR = os.path.dirname(FILE)
def gen(mu, sigma, name):
"""Generate fixture data and write to file.
# Arguments
* `mu`: mean parameter
* `sigma`: standard deviation
* `name::str`: output filename
# Examples
``` python
python> mu = rand(1000) * 10.0 - 5.0
python> sigma = rand(1000) * 10.0 + 1.0
python> gen(mu, sigma, './data.json')
```
"""
y = list()
for a, b in np.nditer([mu, sigma]):
y.append(norm.std(a, b))
# Store data to be written to file as a dictionary:
data = {
"mu": mu.tolist(),
"sigma": sigma.tolist(),
"expected": y
}
# Based on the script directory, create an output filepath:
filepath = os.path.join(DIR, name)
# Write the data to the output filepath as JSON:
with open(filepath, "w") as outfile:
json.dump(data, outfile)
def main():
"""Generate fixture data."""
mu = rand(1000) * 10.0 - 5.0
sigma = rand(1000) * 10.0 + 1.0
gen(mu, sigma, "data.json")
if __name__ == "__main__":
main()
|