File: repl.txt

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (138 lines) | stat: -rw-r--r-- 4,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

{{alias}}( N, c, x, strideX, out, strideOut )
    Computes the mean and standard deviation of a double-precision floating-
    point strided array using a two-pass algorithm.

    The `N` and `stride` parameters determine which elements are accessed at
    runtime.

    Indexing is relative to the first index. To introduce an offset, use a typed
    array view.

    If `N <= 0`, the function returns a mean and standard deviation equal to
    `NaN`.

    Parameters
    ----------
    N: integer
        Number of indexed elements.

    c: number
        Degrees of freedom adjustment. Setting this parameter to a value other
        than `0` has the effect of adjusting the divisor during the calculation
        of the standard deviation according to `N - c` where `c` corresponds to
        the provided degrees of freedom adjustment. When computing the standard
        deviation of a population, setting this parameter to `0` is the standard
        choice (i.e., the provided array contains data constituting an entire
        population). When computing the corrected sample standard deviation,
        setting this parameter to `1` is the standard choice (i.e., the provided
        array contains data sampled from a larger population; this is commonly
        referred to as Bessel's correction).

    x: Float64Array
        Input array.

    strideX: integer
        Index increment for `x`.

    out: Float64Array
        Output array.

    strideOut: integer
        Index increment for `out`.

    Returns
    -------
    out: Float64Array
        Output array.

    Examples
    --------
    // Standard Usage:
    > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
    > var out = new {{alias:@stdlib/array/float64}}( 2 );
    > {{alias}}( x.length, 1, x, 1, out, 1 )
    <Float64Array>[ ~0.3333, ~2.0817 ]

    // Using `N` and `stride` parameters:
    > x = new {{alias:@stdlib/array/float64}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
    > out = new {{alias:@stdlib/array/float64}}( 2 );
    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    > {{alias}}( N, 1, x, 2, out, 1 )
    <Float64Array>[ ~0.3333, ~2.0817 ]

    // Using view offsets:
    > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, 1.0 ] );
    > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
    > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
    > out = new {{alias:@stdlib/array/float64}}( 2 );
    > {{alias}}( N, 1, x1, 2, out, 1 )
    <Float64Array>[ ~0.3333, ~2.0817 ]

{{alias}}.ndarray( N, c, x, strideX, offsetX, out, strideOut, offsetOut )
    Computes the mean and standard deviation of a double-precision floating-
    point strided array using a two-pass algorithm and alternative indexing
    semantics.

    While typed array views mandate a view offset based on the underlying
    buffer, the `offset` parameter supports indexing semantics based on a
    starting index.

    Parameters
    ----------
    N: integer
        Number of indexed elements.

    c: number
        Degrees of freedom adjustment. Setting this parameter to a value other
        than `0` has the effect of adjusting the divisor during the calculation
        of the standard deviation according to `N - c` where `c` corresponds to
        the provided degrees of freedom adjustment. When computing the standard
        deviation of a population, setting this parameter to `0` is the standard
        choice (i.e., the provided array contains data constituting an entire
        population). When computing the corrected sample standard deviation,
        setting this parameter to `1` is the standard choice (i.e., the provided
        array contains data sampled from a larger population; this is commonly
        referred to as Bessel's correction).

    x: Float64Array
        Input array.

    strideX: integer
        Index increment for `x`.

    offsetX: integer
        Starting index for `x`.

    out: Float64Array
        Output array.

    strideOut: integer
        Index increment for `out`.

    offsetOut: integer
        Starting index for `out`.

    Returns
    -------
    out: Float64Array
        Output array.

    Examples
    --------
    // Standard Usage:
    > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
    > var out = new {{alias:@stdlib/array/float64}}( 2 );
    > {{alias}}.ndarray( x.length, 1, x, 1, 0, out, 1, 0 )
    <Float64Array>[ ~0.3333, ~2.0817 ]

    // Using offset parameter:
    > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, 1.0 ] );
    > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    > out = new {{alias:@stdlib/array/float64}}( 2 );
    > {{alias}}.ndarray( N, 1, x, 2, 1, out, 1, 0 )
    <Float64Array>[ ~0.3333, ~2.0817 ]

    See Also
    --------