File: README.md

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (196 lines) | stat: -rw-r--r-- 5,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
<!--

@license Apache-2.0

Copyright (c) 2020 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# snanmeanors

> Calculate the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.

<section class="intro">

The [arithmetic mean][arithmetic-mean] is defined as

<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->

<div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
    <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8aea2a0cdd426388aeb325d5711205df9b5bd1af/lib/node_modules/@stdlib/stats/base/snanmeanors/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
    <br>
</div>

<!-- </equation> -->

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var snanmeanors = require( '@stdlib/stats/base/snanmeanors' );
```

#### snanmeanors( N, x, stride )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x`, ignoring `NaN` values and using ordinary recursive summation.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snanmeanors( N, x, 1 );
// returns ~0.3333
```

The function has the following parameters:

-   **N**: number of indexed elements.
-   **x**: input [`Float32Array`][@stdlib/array/float32].
-   **stride**: index increment for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );

var v = snanmeanors( N, x, 2 );
// returns 1.25
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = snanmeanors( N, x1, 2 );
// returns 1.25
```

#### snanmeanors.ndarray( N, x, stride, offset )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snanmeanors.ndarray( N, x, 1, 0 );
// returns ~0.33333
```

The function has the following additional parameters:

-   **offset**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );

var v = snanmeanors.ndarray( N, x, 2, 1 );
// returns 1.25
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

-   If `N <= 0`, both functions return `NaN`.
-   If every indexed element is `NaN`, both functions return `NaN`.
-   Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute an arithmetic mean is acceptable; in all other cases, exercise due caution.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var snanmeanors = require( '@stdlib/stats/base/snanmeanors' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( (randu()*100.0) - 50.0 );
    }
}
console.log( x );

var v = snanmeanors( x.length, x, 1 );
console.log( v );
```

</section>

<!-- /.examples -->

<section class="references">

</section>

<!-- /.references -->

<section class="links">

[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean

[@stdlib/array/float32]: https://github.com/stdlib-js/array-float32

[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray

</section>

<!-- /.links -->