File: repl.txt

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (188 lines) | stat: -rw-r--r-- 5,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

{{alias}}( x[, y][, options] )
    Computes a one-sample or paired Student's t test.

    When no `y` is supplied, the function performs a one-sample t-test for the
    null hypothesis that the data in array or typed array `x` is drawn from a
    normal distribution with mean zero and unknown variance.

    When array or typed array `y` is supplied, the function tests whether the
    differences `x - y` come from a normal distribution with mean zero and
    unknown variance via the paired t-test.

    The returned object comes with a `.print()` method which when invoked will
    print a formatted output of the results of the hypothesis test.

    Parameters
    ----------
    x: Array<number>
        Data array.

    y: Array<number> (optional)
        Paired data array.

    options: Object (optional)
        Options.

    options.alpha: number (optional)
        Number in the interval `[0,1]` giving the significance level of the
        hypothesis test. Default: `0.05`.

    options.alternative: string (optional)
        Indicates whether the alternative hypothesis is that the mean of `x` is
        larger than `mu` (`greater`), smaller than `mu` (`less`) or equal to
        `mu` (`two-sided`). Default: `'two-sided'`.

    options.mu: number (optional)
        Hypothesized true mean under the null hypothesis. Set this option to
        test whether the data comes from a distribution with the specified `mu`.
        Default: `0`.

    Returns
    -------
    out: Object
        Test result object.

    out.alpha: number
        Used significance level.

    out.rejected: boolean
        Test decision.

    out.pValue: number
        p-value of the test.

    out.statistic: number
        Value of test statistic.

    out.ci: Array<number>
        1-alpha confidence interval for the mean.

    out.nullValue: number
        Assumed mean under H0 (or difference in means when `y` is supplied).

    out.alternative: string
        Alternative hypothesis (`two-sided`, `less` or `greater`).

    out.df: number
        Degrees of freedom.

    out.mean: number
        Sample mean of `x` or `x - y`, respectively.

    out.sd: number
        Standard error of the mean.

    out.method: string
        Name of test.

    out.print: Function
        Function to print formatted output.

    Examples
    --------
    // One-sample t-test:
    > var rnorm = {{alias:@stdlib/random/base/normal}}.factory( 0.0, 2.0, { 'seed': 5776 });
    > var x = new Array( 100 );
    > for ( var i = 0; i < x.length; i++ ) {
    ...     x[ i ] = rnorm();
    ... }
    > var out = {{alias}}( x )
    {
        rejected: false,
        pValue: ~0.722,
        statistic: ~0.357,
        ci: [~-0.333,~0.479],
        // ...
    }

    // Paired t-test:
    > rnorm = {{alias:@stdlib/random/base/normal}}.factory( 1.0, 2.0, { 'seed': 786 });
    > x = new Array( 100 );
    > var y = new Array( 100 );
    > for ( i = 0; i < x.length; i++ ) {
    ...     x[ i ] = rnorm();
    ...     y[ i ] = rnorm();
    ... }
    > out = {{alias}}( x, y )
    {
        rejected: false,
        pValue: ~0.191,
        statistic: ~1.315,
        ci: [ ~-0.196, ~0.964 ],
        // ...
    }

    // Print formatted output:
    > var table = out.print()
    Paired t-test

    Alternative hypothesis: True difference in means is not equal to 0

        pValue: 0.1916
        statistic: 1.3148
        df: 99
        95% confidence interval: [-0.1955,0.9635]

    Test Decision: Fail to reject null in favor of alternative at 5%
    significance level

    // Choose custom significance level:
    > arr = [ 2, 4, 3, 1, 0 ];
    > out = {{alias}}( arr, { 'alpha': 0.01 });
    > table = out.print()
    One-sample t-test

    Alternative hypothesis: True mean is not equal to 0

        pValue: 0.0474
        statistic: 2.8284
        df: 4
        99% confidence interval: [-1.2556,5.2556]

    Test Decision: Fail to reject null in favor of alternative at 1%
    significance level

    // Test for a mean equal to five:
    > var arr = [ 4, 4, 6, 6, 5 ];
    > out = {{alias}}( arr, { 'mu': 5 })
    {
        rejected: false,
        pValue: 1,
        statistic: 0,
        ci: [ ~3.758, ~6.242 ],
        // ...
    }

    // Perform one-sided tests:
    > arr = [ 4, 4, 6, 6, 5 ];
    > out = {{alias}}( arr, { 'alternative': 'less' });
    > table = out.print()
    One-sample t-test

    Alternative hypothesis: True mean is less than 0

        pValue: 0.9998
        statistic: 11.1803
        df: 4
        95% confidence interval: [-Infinity,5.9534]

    Test Decision: Fail to reject null in favor of alternative at 5%
    significance level

    > out = {{alias}}( arr, { 'alternative': 'greater' });
    > table = out.print()
    One-sample t-test

    Alternative hypothesis: True mean is greater than 0

        pValue: 0.0002
        statistic: 11.1803
        df: 4
        95% confidence interval: [4.0466,Infinity]

    Test Decision: Reject null in favor of alternative at 5% significance level

    See Also
    --------