File: repl.txt

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (140 lines) | stat: -rw-r--r-- 3,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

{{alias}}( x, sigma[, options] )
    Computes a one-sample z-test.

    The function performs a one-sample z-test for the null hypothesis that the
    data in array or typed array `x` is drawn from a normal distribution with
    mean zero and standard deviation `sigma`.

    The returned object comes with a `.print()` method which when invoked will
    print a formatted output of the results of the hypothesis test.

    Parameters
    ----------
    x: Array<number>
        Data array.

    sigma: number
        Known standard deviation.

    options: Object (optional)
        Options.

    options.alpha: number (optional)
        Number in the interval `[0,1]` giving the significance level of the
        hypothesis test. Default: `0.05`.

    options.alternative: string (optional)
        Indicates whether the alternative hypothesis is that the mean of `x` is
        larger than `mu` (`greater`), smaller than `mu` (`less`) or equal to
        `mu` (`two-sided`). Default: `'two-sided'`.

    options.mu: number (optional)
        Hypothesized true mean under the null hypothesis. Set this option to
        test whether the data comes from a distribution with the specified `mu`.
        Default: `0`.

    Returns
    -------
    out: Object
        Test result object.

    out.alpha: number
        Used significance level.

    out.rejected: boolean
        Test decision.

    out.pValue: number
        p-value of the test.

    out.statistic: number
        Value of test statistic.

    out.ci: Array<number>
        1-alpha confidence interval for mean.

    out.nullValue: number
        Assumed mean value under H0.

    out.sd: number
        Standard error.

    out.alternative: string
        Alternative hypothesis (`two-sided`, `less` or `greater`).

    out.method: string
        Name of test (`One-Sample z-test`).

    out.print: Function
        Function to print formatted output.

    Examples
    --------
    // One-sample z-test:
    > var rnorm = {{alias:@stdlib/random/base/normal}}.factory( 0.0, 2.0, { 'seed': 212 });
    > var x = new Array( 100 );
    > for ( var i = 0; i < x.length; i++ ) {
    ...     x[ i ] = rnorm();
    ... }
    > var out = {{alias}}( x, 2.0 )
    {
        alpha: 0.05,
        rejected: false,
        pValue: ~0.180,
        statistic: ~-1.34,
        ci: [ ~-0.66, ~0.124 ],
        ...
    }

    // Choose custom significance level and print output:
    > arr = [ 2, 4, 3, 1, 0 ];
    > out = {{alias}}( arr, 2.0, { 'alpha': 0.01 });
    > table = out.print()
    One-sample z-test

    Alternative hypothesis: True mean is not equal to 0

        pValue: 0.0253
        statistic: 2.2361
        99% confidence interval: [-0.3039,4.3039]

    Test Decision: Fail to reject null in favor of alternative at 1%
    significance level


    // Test for a mean equal to five:
    > var arr = [ 4, 4, 6, 6, 5 ];
    > out = {{alias}}( arr, 1.0, { 'mu': 5 })
    {
        rejected: false,
        pValue: 1,
        statistic: 0,
        ci: [ ~4.123, ~5.877 ],
        // ...
    }

    // Perform one-sided tests:
    > arr = [ 4, 4, 6, 6, 5 ];
    > out = {{alias}}( arr, 1.0, { 'alternative': 'less' })
    {
        alpha: 0.05,
        rejected: false,
        pValue: 1,
        statistic: 11.180339887498949,
        ci: [ -Infinity, 5.735600904580115 ],
        // ...
    }
    > out = {{alias}}( arr, 1.0, { 'alternative': 'greater' })
    {
        alpha: 0.05,
        rejected: true,
        pValue: 0,
        statistic: 11.180339887498949,
        ci: [ 4.264399095419885, Infinity ],
        //...
    }

    See Also
    --------