1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link https://github.com/boostorg/math/blob/develop/include/boost/math/special_functions/detail/bessel_j0.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* Copyright Xiaogang Zhang, 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
'use strict';
// MODULES //
var sqrt = require( './../../../../base/special/sqrt' );
var sincos = require( './../../../../base/special/sincos' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var poly1 = require( './rational_p1q1.js' );
var poly2 = require( './rational_p2q2.js' );
var polyC = require( './rational_pcqc.js' );
var polyS = require( './rational_psqs.js' );
// VARIABLES //
var ONE_DIV_SQRT_PI = 0.5641895835477563;
var x1 = 2.4048255576957727686e+00;
var x2 = 5.5200781102863106496e+00;
var x11 = 6.160e+02;
var x12 = -1.42444230422723137837e-03;
var x21 = 1.4130e+03;
var x22 = 5.46860286310649596604e-04;
// `sincos` workspace:
var sc = [ 0.0, 0.0 ]; // WARNING: not thread safe
// MAIN //
/**
* Computes the Bessel function of the first kind of order zero.
*
* @param {number} x - input value
* @returns {number} evaluated Bessel function
*
* @example
* var v = j0( 0.0 );
* // returns 1.0
*
* v = j0( 1.0 );
* // returns ~0.765
*
* v = j0( Infinity );
* // returns 0.0
*
* v = j0( -Infinity );
* // returns 0.0
*
* v = j0( NaN );
* // returns NaN
*/
function j0( x ) {
var rc;
var rs;
var y2;
var r;
var y;
var f;
if ( x < 0 ) {
x = -x;
}
if ( x === PINF ) {
return 0.0;
}
if ( x === 0 ) {
return 1.0;
}
if ( x <= 4.0 ) {
y = x * x;
r = poly1( y );
f = ( x+x1 ) * ( (x - (x11/256.0)) - x12 );
return f * r;
}
if ( x <= 8.0 ) {
y = 1.0 - ( ( x*x )/64.0 );
r = poly2( y );
f = ( x+x2 ) * ( (x - (x21/256.0)) - x22 );
return f * r;
}
y = 8.0 / x;
y2 = y * y;
rc = polyC( y2 );
rs = polyS( y2 );
f = ONE_DIV_SQRT_PI / sqrt(x);
/*
* What follows is really just:
*
* ```
* var z = x - pi/4;
* return f * (rc * cos(z) - y * rs * sin(z));
* ```
*
* But using the addition formulae for sin and cos, plus the special values for sin/cos of `π/4`.
*/
sincos( sc, x );
return f * ( ( rc * (sc[1]+sc[0]) ) - ( (y*rs) * (sc[0]-sc[1]) ) );
}
// EXPORTS //
module.exports = j0;
|