File: exp.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (206 lines) | stat: -rw-r--r-- 5,298 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The following copyright, license, and long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/e_exp.c}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ```
*/

'use strict';

// MODULES //

var isnan = require( './../../../../base/assert/is-nan' );
var trunc = require( './../../../../base/special/trunc' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var expmulti = require( './expmulti.js' );


// VARIABLES //

var LN2_HI = 6.93147180369123816490e-01;
var LN2_LO = 1.90821492927058770002e-10;
var LOG2_E = 1.44269504088896338700e+00;
var OVERFLOW = 7.09782712893383973096e+02;
var UNDERFLOW = -7.45133219101941108420e+02;
var NEARZERO = 1.0 / (1 << 28); // 2^-28;
var NEG_NEARZERO = -NEARZERO;


// MAIN //

/**
* Evaluates the natural exponential function.
*
* ## Method
*
* 1.  We reduce \\( x \\) to an \\( r \\) so that \\( |r| \leq 0.5 \cdot \ln(2) \approx 0.34658 \\). Given \\( x \\), we find an \\( r \\) and integer \\( k \\) such that
*
*     ```tex
*     \begin{align*}
*     x &= k \cdot \ln(2) + r \\
*     |r| &\leq 0.5 \cdot \ln(2)
*     \end{align*}
*     ```
*
*     <!-- <note> -->
*
*     \\( r \\) can be represented as \\( r = \mathrm{hi} - \mathrm{lo} \\) for better accuracy.
*
*     <!-- </note> -->
*
* 2.  We approximate of \\( e^{r} \\) by a special rational function on the interval \\(\[0,0.34658]\\):
*
*     ```tex
*     \begin{align*}
*     R\left(r^2\right) &= r \cdot \frac{ e^{r}+1 }{ e^{r}-1 } \\
*     &= 2 + \frac{r^2}{6} - \frac{r^4}{360} + \ldots
*     \end{align*}
*     ```
*
*     We use a special Remes algorithm on \\(\[0,0.34658]\\) to generate a polynomial of degree \\(5\\) to approximate \\(R\\). The maximum error of this polynomial approximation is bounded by \\(2^{-59}\\). In other words,
*
*     ```tex
*     R(z) \sim 2 + P_1 z + P_2 z^2 + P_3 z^3 + P_4 z^4 + P_5 z^5
*     ```
*
*     where \\( z = r^2 \\) and
*
*     ```tex
*     \left|  2 + P_1 z + \ldots + P_5 z^5  - R(z) \right| \leq 2^{-59}
*     ```
*
*     <!-- <note> -->
*
*     The values of \\( P_1 \\) to \\( P_5 \\) are listed in the source code.
*
*     <!-- </note> -->
*
*     The computation of \\( e^{r} \\) thus becomes
*
*     ```tex
*     \begin{align*}
*     e^{r} &= 1 + \frac{2r}{R-r} \\
*           &= 1 + r + \frac{r \cdot R_1(r)}{2 - R_1(r)}\ \text{for better accuracy}
*     \end{align*}
*     ```
*
*     where
*
*     ```tex
*     R_1(r) = r - P_1\ r^2 + P_2\ r^4 + \ldots + P_5\ r^{10}
*     ```
*
* 3.  We scale back to obtain \\( e^{x} \\). From step 1, we have
*
*     ```tex
*     e^{x} = 2^k e^{r}
*     ```
*
*
* ## Special Cases
*
* ```tex
* \begin{align*}
* e^\infty &= \infty \\
* e^{-\infty} &= 0 \\
* e^{\mathrm{NaN}} &= \mathrm{NaN} \\
* e^0 &= 1\ \mathrm{is\ exact\ for\ finite\ argument\ only}
* \end{align*}
* ```
*
* ## Notes
*
* -   According to an error analysis, the error is always less than \\(1\\) ulp (unit in the last place).
*
* -   For an IEEE double,
*
*     -   if \\(x > 7.09782712893383973096\mbox{e+}02\\), then \\(e^{x}\\) overflows
*     -   if \\(x < -7.45133219101941108420\mbox{e+}02\\), then \\(e^{x}\\) underflows
*
* -   The hexadecimal values included in the source code are the intended ones for the used constants. Decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the intended hexadecimal values.
*
*
* @param {number} x - input value
* @returns {number} function value
*
* @example
* var v = exp( 4.0 );
* // returns ~54.5982
*
* @example
* var v = exp( -9.0 );
* // returns ~1.234e-4
*
* @example
* var v = exp( 0.0 );
* // returns 1.0
*
* @example
* var v = exp( NaN );
* // returns NaN
*/
function exp( x ) {
	var hi;
	var lo;
	var k;

	if ( isnan( x ) || x === PINF ) {
		return x;
	}
	if ( x === NINF ) {
		return 0.0;
	}
	if ( x > OVERFLOW ) {
		return PINF;
	}
	if ( x < UNDERFLOW ) {
		return 0.0;
	}
	if (
		x > NEG_NEARZERO &&
		x < NEARZERO
	) {
		return 1.0 + x;
	}
	// Reduce and compute `r = hi - lo` for extra precision.
	if ( x < 0.0 ) {
		k = trunc( (LOG2_E*x) - 0.5 );
	} else {
		k = trunc( (LOG2_E*x) + 0.5 );
	}
	hi = x - (k*LN2_HI);
	lo = k * LN2_LO;

	return expmulti( hi, lo, k );
}


// EXPORTS //

module.exports = exp;