File: falling_factorial.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (217 lines) | stat: -rw-r--r-- 5,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_64_0/boost/math/special_functions/factorials.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006, 2010.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/

'use strict';

// MODULES //

var isNonNegativeInteger = require( './../../../../base/assert/is-nonnegative-integer' );
var isInteger = require( './../../../../base/assert/is-integer' );
var isnan = require( './../../../../base/assert/is-nan' );
var gammaDeltaRatio = require( './../../../../base/special/gamma-delta-ratio' );
var floor = require( './../../../../base/special/floor' );
var abs = require( './../../../../base/special/abs' );
var FLOAT64_MAX = require( '@stdlib/constants/float64/max' );
var PINF = require( '@stdlib/constants/float64/pinf' );


// VARIABLES //

var MAX_FACTORIAL = 170; // TODO: consider packaging as constant


// FUNCTIONS //

/**
* Computes the rising factorial of `x` and `n`.
*
* ## Notes
*
* -   The rising factorial is defined as
*
*     ```tex
*     \operatorname{risingFactorial}(x, n) = x (x-1) (x-2) (x-3) \ldots (x-n+1)
*     ```
*
*     or equivalently
*
*     ```tex
*     \operatorname{risingFactorial}(x, n) = \frac{ \Gamma(x + n) }{ \Gamma(x) };
*     ```
*
* @param {number} x - first function parameter
* @param {integer} n - second function parameter
* @returns {number} function value
*
* @example
* var v = risingFactorial( 0.9, 5 );
* // returns ~94.766
*
* @example
* var v = risingFactorial( -9.0, 3 );
* // returns -504.0
*
* @example
* var v = risingFactorial( 0.0, 2 );
* // returns 0.0
*
* @example
* var v = risingFactorial( 3.0, -2 );
* // returns 0.5
*/
function risingFactorial( x, n ) {
	var result;
	var inv;

	if ( isnan( x ) || !isInteger( n ) ) {
		return NaN;
	}
	if ( x < 0.0 ) {
		// For `x < 0`, we really have a falling factorial, modulo a possible change of sign. Note that the falling factorial isn't defined for negative `n`, so we'll get rid of that case first:
		if ( n < 0.0 ) {
			x += n;
			n = -n;
			inv = true;
		}
		result = ( (n&1) ? -1.0 : 1.0 ) * fallingFactorial( -x, n );
		if ( inv ) {
			result = 1.0 / result;
		}
		return result;
	}
	if ( n === 0 ) {
		return 1.0;
	}
	if ( x === 0.0 ) {
		if ( n < 0 ) {
			return -gammaDeltaRatio( x+1.0, -n );
		}
		return 0.0;
	}
	if ( x < 1.0 && x+n < 0.0 ) {
		result = gammaDeltaRatio( 1.0-x, -n );
		return ( n&1 ) ? -result : result;
	}
	// We don't optimize this for small `n`, because `gammaDeltaRatio` is already optimized for that use case:
	return 1.0 / gammaDeltaRatio( x, n );
}


// MAIN //

/**
* Computes the falling factorial of `x` and `n`.
*
* ## Notes
*
* -   The falling factorial is defined as
*
*     ```tex
*     \operatorname{fallingFactorial}(x, n) = x (x-1) (x-2) (x-3) \ldots (x-n+1)
*     ```
*
* @param {number} x - first function parameter
* @param {NonNegativeInteger} n - second function parameter
* @returns {number} function value
*
* @example
* var v = fallingFactorial( 0.9, 5 );
* // returns ~0.644
*
* @example
* var v = fallingFactorial( -9.0, 3 );
* // returns -990.0
*
* @example
* var v = fallingFactorial( 0.0, 2 );
* // returns 0.0
*
* @example
* var v = fallingFactorial( 3.0, -2 );
* // returns NaN
*/
function fallingFactorial( x, n ) {
	var result;
	var xp1;
	var n2;
	var t1;
	var t2;

	if ( isnan( x ) || !isNonNegativeInteger( n ) ) {
		return NaN;
	}
	if ( x === 0.0 ) {
		return 0.0;
	}
	if ( x < 0.0 ) {
		// For `x < 0`, we really have a rising factorial modulo a possible change of sign:
		return ( ( n&1 ) ? -1.0 : 1.0 ) * risingFactorial( -x, n );
	}
	if ( n === 0 ) {
		return 1.0;
	}
	if ( x < 0.5 ) {
		// Computing `1 + x` will throw away digits, so split up calculation...
		if ( n > MAX_FACTORIAL-2 ) {
			// Given a ratio of two very large numbers, we need to split the calculation up into two blocks:
			t1 = x * fallingFactorial( x-1.0, MAX_FACTORIAL-2 );
			t2 = fallingFactorial( x-MAX_FACTORIAL+1.0, n-MAX_FACTORIAL+1 );
			if ( FLOAT64_MAX/abs(t1) < abs(t2) ) {
				return PINF;
			}
			return t1 * t2;
		}
		return x * fallingFactorial( x-1.0, n-1.0 );
	}
	if ( x <= n-1.0 ) {
		// `x+1-n` will be negative and computing the ratio of two gammas will not work, so split the product up into three parts:
		xp1 = x + 1.0;
		n2 = abs( floor( xp1 ) );
		if ( n2 === xp1 ) {
			return 0.0;
		}
		result = gammaDeltaRatio( xp1, -n2 );
		x -= n2;
		result *= x;
		n2 += 1.0;
		if ( n2 < n ) {
			result *= fallingFactorial( x-1.0, n-n2 );
		}
		return result;
	}
	// Simple case: just the ratio of two (positive argument) gamma functions. Note that we don't optimize this for small `n`, because `gammaDeltaRatio` is already optimized for that use case:
	return gammaDeltaRatio( x+1.0, -n );
}


// EXPORTS //

module.exports = fallingFactorial;