1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The following copyright, license, and long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/k_tan.c}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ```
*/
'use strict';
// MODULES //
var getHighWord = require( '@stdlib/number/float64/base/get-high-word' );
var setLowWord = require( '@stdlib/number/float64/base/set-low-word' );
var polyvalOdd = require( './polyval_t_odd.js' );
var polyvalEven = require( './polyval_t_even.js' );
// VARIABLES //
var PIO4 = 7.85398163397448278999e-01;
var PIO4LO = 3.06161699786838301793e-17;
var T0 = 3.33333333333334091986e-01; // 3FD55555, 55555563
// Absolute value mask: 2147483647 => 0x7fffffff => 01111111111111111111111111111111
var HIGH_WORD_ABS_MASK = 0x7fffffff|0; // asm type annotation
// MAIN //
/**
* Computes the tangent on \\( \approx\[-\pi/4, \pi/4] \\) (except on -0), \\( \pi/4 \approx 0.7854 \\).
*
* ## Method
*
* - Since \\( \tan(-x) = -\tan(x) \\), we need only to consider positive \\( x \\).
*
* - Callers must return \\( \tan(-0) = -0 \\) without calling here since our odd polynomial is not evaluated in a way that preserves \\( -0 \\). Callers may do the optimization \\( \tan(x) \approx x \\) for tiny \\( x \\).
*
* - \\( \tan(x) \\) is approximated by a odd polynomial of degree 27 on \\( \[0, 0.67434] \\)
*
* ```tex
* \tan(x) \approx x + T_1 x^3 + \ldots + T_{13} x^{27}
* ```
* where
*
* ```tex
* \left| \frac{\tan(x)}{x} - \left( 1 + T_1 x^2 + T_2 x^4 + \ldots + T_{13} x^{26} \right) \right| \le 2^{-59.2}
* ```
*
* - Note: \\( \tan(x+y) = \tan(x) + \tan'(x) \cdot y \approx \tan(x) + ( 1 + x \cdot x ) \cdot y \\). Therefore, for better accuracy in computing \\( \tan(x+y) \\), let
*
* ```tex
* r = x^3 \cdot \left( T_2+x^2 \cdot (T_3+x^2 \cdot (\ldots+x^2 \cdot (T_{12}+x^2 \cdot T_{13}))) \right)
* ```
*
* then
*
* ```tex
* \tan(x+y) = x^3 + \left( T_1 \cdot x^2 + (x \cdot (r+y)+y) \right)
* ```
*
* - For \\( x \\) in \\( \[0.67434, \pi/4] \\), let \\( y = \pi/4 - x \\), then
*
* ```tex
* \tan(x) = \tan\left(\tfrac{\pi}{4}-y\right) = \frac{1-\tan(y)}{1+\tan(y)} \\
* = 1 - 2 \cdot \left( \tan(y) - \tfrac{\tan(y)^2}{1+\tan(y)} \right)
* ```
*
*
* @param {number} x - input value (in radians, assumed to be bounded by ~π/4 in magnitude)
* @param {number} y - tail of `x`
* @param {integer} k - indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned
* @returns {number} tangent
*
* @example
* var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 );
* // returns ~1.0
*
* @example
* var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 );
* // returns ~-1.0
*
* @example
* var out = kernelTan( 3.141592653589793/6.0, 0.0, 1 );
* // returns ~0.577
*
* @example
* var out = kernelTan( 0.664, 5.288e-17, 1 );
* // returns ~0.783
*
* @example
* var out = kernelTan( NaN, 0.0, 1 );
* // returns NaN
*
* @example
* var out = kernelTan( 3.0, NaN, 1 );
* // returns NaN
*
* @example
* var out = kernelTan( NaN, NaN, 1 );
* // returns NaN
*/
function kernelTan( x, y, k ) {
var hx;
var ix;
var a;
var r;
var s;
var t;
var v;
var w;
var z;
hx = getHighWord( x );
// High word of |x|:
ix = (hx & HIGH_WORD_ABS_MASK)|0; // asm type annotation
// Case: |x| >= 0.6744
if ( ix >= 0x3FE59428 ) {
if ( x < 0 ) {
x = -x;
y = -y;
}
z = PIO4 - x;
w = PIO4LO - y;
x = z + w;
y = 0.0;
}
z = x * x;
w = z * z;
// Break x^5*(T[1]+x^2*T[2]+...) into x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + x^5(x^2*(T[2]+x^4*T[4]+...+x^22*T[12]))...
r = polyvalOdd( w );
v = z * polyvalEven( w );
s = z * x;
r = y + (z * ((s * (r + v)) + y));
r += T0 * s;
w = x + r;
if ( ix >= 0x3FE59428 ) {
v = k;
return ( 1.0 - ( (hx >> 30) & 2 ) ) * ( v - (2.0 * (x - ((w * w / (w + v)) - r)) )); // eslint-disable-line max-len
}
if ( k === 1 ) {
return w;
}
// Compute -1/(x+r) accurately...
z = w;
setLowWord( z, 0 );
v = r - (z - x); // z + v = r + x
a = -1.0 / w; // a = -1/w
t = a;
setLowWord( t, 0 );
s = 1.0 + (t * z);
return t + (a * (s + (t * v)));
}
// EXPORTS //
module.exports = kernelTan;
|