File: log1p.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (360 lines) | stat: -rw-r--r-- 9,445 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The following copyright, license, and long comment were part of the original implementation available as part of [FDLIBM]{@link http://www.netlib.org/fdlibm/s_log1p.c}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ```
*/

'use strict';

// MODULES //

var isnan = require( './../../../../base/assert/is-nan' );
var getHighWord = require( '@stdlib/number/float64/base/get-high-word' );
var setHighWord = require( '@stdlib/number/float64/base/set-high-word' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var FLOAT64_EXPONENT_BIAS = require( '@stdlib/constants/float64/exponent-bias' );
var polyval = require( './polyval_lp.js' );


// VARIABLES //

// High and low words of ln(2):
var LN2_HI = 6.93147180369123816490e-01; // 0x3fe62e42 0xfee00000
var LN2_LO = 1.90821492927058770002e-10; // 0x3dea39ef 0x35793c76

// sqrt(2)-1:
var SQRT2M1 = 4.142135623730950488017e-01; // 0x3fda8279 0x99fcef34

// sqrt(2)/2-1:
var SQRT2HALFM1 = -2.928932188134524755992e-01; // 0xbfd2bec3 0x33018866

// 2**-29:
var SMALL = 1.862645149230957e-09; // 0x3e200000 0x00000000

// 2**-54:
var TINY = 5.551115123125783e-17;

// Max integer (unsafe) => 2**53:
var TWO53 = 9007199254740992;

// 2/3:
var TWO_THIRDS = 6.666666666666666666e-01;


// MAIN //

/**
* Evaluates the natural logarithm of \\(1+x\\).
*
* ## Method
*
* 1.  Argument Reduction: find \\(k\\) and \\(f\\) such that
*
*     ```tex
*     1+x = 2^k (1+f)
*     ```
*
*     where
*
*     ```tex
*     \frac{\sqrt{2}}{2} < 1+f < \sqrt{2}
*     ```
*
*     <!-- <note> -->
*
*     If \\(k=0\\), then \\(f=x\\) is exact. However, if \\(k \neq 0\\), then \\(f\\) may not be representable exactly. In that case, a correction term is needed. Let
*
*     ```tex
*     u = \operatorname{round}(1+x)
*     ```
*
*     and
*
*     ```tex
*     c = (1+x) - u
*     ```
*
*     then
*
*     ```tex
*     \ln (1+x) - \ln u \approx \frac{c}{u}
*     ```
*
*     We can thus proceed to compute \\(\ln(u)\\), and add back the correction term \\(c/u\\).
*
*     <!-- </note> -->
*
*     <!-- <note> -->
*
*     When \\(x > 2^{53}\\), one can simply return \\(\ln(x)\\).
*
*     <!-- </note> -->
*
* 2.  Approximation of \\(\operatorname{log1p}(f)\\). Let
*
*     ```tex
*     s = \frac{f}{2+f}
*     ```
*
*     based on
*
*     ```tex
*     \begin{align*}
*     \ln 1+f &= \ln (1+s) - \ln (1-s) \\
*             &= 2s + \frac{2}{3} s^3 + \frac{2}{5} s^5 + ... \\
*             &= 2s + sR \\
*     \end{align*}
*     ```
*
*     We use a special Reme algorithm on \\(\[0,0.1716\]\\) to generate a polynomial of degree \\(14\\) to approximate \\(R\\). The maximum error of this polynomial approximation is bounded by \\(2^{-58.45}\\). In other words,
*
*     ```tex
*     R(z) \approx \mathrm{Lp}_1 s^2 + \mathrm{Lp}_2 s^4 + \mathrm{Lp}_3 s^6 + \mathrm{Lp}_4 s^8 + \mathrm{Lp}_5 s^{10} + \mathrm{Lp}_6 s^{12} + \mathrm{Lp}_7 s^{14}
*     ```
*
*     and
*
*     ```tex
*     | \mathrm{Lp}_1 s^2 + \ldots + \mathrm{Lp}_7 s^14 - R(z) | \leq 2^{-58.45}
*     ```
*
*     <!-- <note> -->
*
*     The values of \\(Lp1\\) to \\(Lp7\\) may be found in the source.
*
*     <!-- </note> -->
*
*     Note that
*
*     ```tex
*     \begin{align*}
*     2s &= f - sf \\
*        &= f - \frac{f^2}{2} + s \frac{f^2}{2} \\
*     \end{align*}
*     ```
*
*     In order to guarantee error in \\(\ln\\) below \\(1\ \mathrm{ulp}\\), we compute the log by
*
*     ```tex
*     \operatorname{log1p}(f) = f - \biggl(\frac{f^2}{2} - s\biggl(\frac{f^2}{2}+R\biggr)\biggr)
*     ```
*
* 3.  Finally,
*
*     ```tex
*     \begin{align*}
*     \operatorname{log1p}(x) &= k \cdot \mathrm{ln2} + \operatorname{log1p}(f) \\
*     &= k \cdot \mathrm{ln2}_{hi}+\biggl(f-\biggl(\frac{f^2}{2}-\biggl(s\biggl(\frac{f^2}{2}+R\biggr)+k \cdot \mathrm{ln2}_{lo}\biggr)\biggr)\biggr) \\
*     \end{align*}
*     ```
*
*     Here \\(\mathrm{ln2}\\) is split into two floating point numbers:
*
*     ```tex
*     \mathrm{ln2}_{hi} + \mathrm{ln2}_{lo}
*     ```
*
*     where \\(n \cdot \mathrm{ln2}_{hi}\\) is always exact for \\(|n| < 2000\\).
*
*
* ## Special Cases
*
* -   \\(\operatorname{log1p}(x) = \mathrm{NaN}\\) with signal if \\(x < -1\\) (including \\(-\infty\\))
* -   \\(\operatorname{log1p}(+\infty) = +\infty\\)
* -   \\(\operatorname{log1p}(-1) = -\infty\\) with signal
* -   \\(\operatorname{log1p}(\mathrm{NaN})= \mathrm{NaN}\\) with no signal
*
*
* ## Notes
*
* -   According to an error analysis, the error is always less than \\(1\\) ulp (unit in the last place).
*
* -   The hexadecimal values are the intended ones for the used constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown.
*
* -   Assuming \\(\ln(x)\\) is accurate, the following algorithm can be used to evaluate \\(\operatorname{log1p}(x)\\) to within a few ULP:
*
*     ```javascript
*     var u = 1.0 + x;
*     if ( u === 1.0 ) {
*         return x;
*     } else {
*         return ln(u) * (x/(u-1.0));
*     }
*     ```
*
*     See HP-15C Advanced Functions Handbook, p.193.
*
*
* @param {number} x - input value
* @returns {number} the natural logarithm of `1+x`
*
* @example
* var v = log1p( 4.0 );
* // returns ~1.609
*
* @example
* var v = log1p( -1.0 );
* // returns -Infinity
*
* @example
* var v = log1p( 0.0 );
* // returns 0.0
*
* @example
* var v = log1p( -0.0 );
* // returns -0.0
*
* @example
* var v = log1p( -2.0 );
* // returns NaN
*
* @example
* var v = log1p( NaN );
* // returns NaN
*/
function log1p( x ) {
	var hfsq;
	var hu;
	var y;
	var f;
	var c;
	var s;
	var z;
	var R;
	var u;
	var k;

	if ( x < -1.0 || isnan( x ) ) {
		return NaN;
	}
	if ( x === -1.0 ) {
		return NINF;
	}
	if ( x === PINF ) {
		return x;
	}
	if ( x === 0.0 ) {
		return x; // handle +-0 (IEEE 754-2008 spec)
	}
	// Set y = |x|:
	if ( x < 0.0 ) {
		y = -x;
	} else {
		y = x;
	}
	// Argument reduction...
	k = 1;

	// Check if argument reduction is needed and if we can just return a small value approximation requiring less computation but with equivalent accuracy...
	if ( y < SQRT2M1 ) { // if |x| < sqrt(2)-1 => ~0.41422
		if ( y < SMALL ) { // if |x| < 2**-29
			if ( y < TINY ) { // if |x| < 2**-54
				return x;
			}
			// Use a simple two-term Taylor series...
			return x - ( x*x*0.5 );
		}
		// Check if `f=x` can be represented exactly (no need for correction terms), allowing us to bypass argument reduction...
		if ( x > SQRT2HALFM1 ) { // if x > sqrt(2)/2-1 => ~-0.2929
			// -0.2929 < x < 0.41422
			k = 0;
			f = x; // exact
			hu = 1;
		}
	}
	// Address case where `f` cannot be represented exactly...
	if ( k !== 0 ) {
		if ( y < TWO53 ) {
			u = 1.0 + x;
			hu = getHighWord( u );

			// Bit shift to isolate the exponent and then subtract the bias:
			k = (hu>>20) - FLOAT64_EXPONENT_BIAS;

			// Correction term...
			if ( k > 0 ) { // positive unbiased exponent
				c = 1.0 - (u-x);
			} else { // nonpositive unbiased exponent
				c = x - (u-1.0);
			}
			c /= u;
		} else {
			u = x;
			hu = getHighWord( u );

			// Bit shift to isolate the exponent and then subtract the bias:
			k = (hu>>20) - FLOAT64_EXPONENT_BIAS;

			// Correction term is zero:
			c = 0;
		}
		// Apply a bit mask (0 00000000000 11111111111111111111) to remove the exponent:
		hu &= 0x000fffff; // max value => 1048575

		// Check if u significand is less than sqrt(2) significand => 0x6a09e => 01101010000010011110
		if ( hu < 434334 ) {
			// Normalize u by setting the exponent to 1023 (bias) => 0x3ff00000 => 0 01111111111 00000000000000000000
			u = setHighWord( u, hu|0x3ff00000 );
		} else {
			k += 1;

			// Normalize u/2 by setting the exponent to 1022 (bias-1 => 2**-1 = 1/2) => 0x3fe00000 => 0 01111111110 00000000000000000000
			u = setHighWord( u, hu|0x3fe00000 );

			// Subtract hu significand from next largest hu => 0 00000000001 00000000000000000000 => 0x00100000 => 1048576
			hu = (1048576-hu)>>2;
		}
		f = u - 1.0;
	}
	// Approximation of log1p(f)...
	hfsq = 0.5 * f * f;
	if ( hu === 0 ) { // if |f| < 2**-20
		if ( f === 0.0 ) {
			c += k * LN2_LO;
			return ( k * LN2_HI ) + c;
		}
		R = hfsq * (1.0 - ( TWO_THIRDS*f ) ); // avoid division
		return ( k*LN2_HI ) - ( (R - ( (k*LN2_LO) + c)) - f );
	}
	s = f / (2.0 + f);
	z = s * s;

	R = z * polyval( z );

	if ( k === 0 ) {
		return f - ( hfsq - ( s*(hfsq+R) ) );
	}
	return ( k*LN2_HI ) - ( (hfsq - ( (s*(hfsq+R)) + ((k*LN2_LO) + c))) - f );
}


// EXPORTS //

module.exports = log1p;