1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The following copyright, license, and long comment were part of the original implementation available as part of [FDLIBM]{@link http://www.netlib.org/fdlibm/s_log1p.c}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ```
*/
'use strict';
// MODULES //
var isnan = require( './../../../../base/assert/is-nan' );
var getHighWord = require( '@stdlib/number/float64/base/get-high-word' );
var setHighWord = require( '@stdlib/number/float64/base/set-high-word' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var FLOAT64_EXPONENT_BIAS = require( '@stdlib/constants/float64/exponent-bias' );
var polyval = require( './polyval_lp.js' );
// VARIABLES //
// High and low words of ln(2):
var LN2_HI = 6.93147180369123816490e-01; // 0x3fe62e42 0xfee00000
var LN2_LO = 1.90821492927058770002e-10; // 0x3dea39ef 0x35793c76
// sqrt(2)-1:
var SQRT2M1 = 4.142135623730950488017e-01; // 0x3fda8279 0x99fcef34
// sqrt(2)/2-1:
var SQRT2HALFM1 = -2.928932188134524755992e-01; // 0xbfd2bec3 0x33018866
// 2**-29:
var SMALL = 1.862645149230957e-09; // 0x3e200000 0x00000000
// 2**-54:
var TINY = 5.551115123125783e-17;
// Max integer (unsafe) => 2**53:
var TWO53 = 9007199254740992;
// 2/3:
var TWO_THIRDS = 6.666666666666666666e-01;
// MAIN //
/**
* Evaluates the natural logarithm of \\(1+x\\).
*
* ## Method
*
* 1. Argument Reduction: find \\(k\\) and \\(f\\) such that
*
* ```tex
* 1+x = 2^k (1+f)
* ```
*
* where
*
* ```tex
* \frac{\sqrt{2}}{2} < 1+f < \sqrt{2}
* ```
*
* <!-- <note> -->
*
* If \\(k=0\\), then \\(f=x\\) is exact. However, if \\(k \neq 0\\), then \\(f\\) may not be representable exactly. In that case, a correction term is needed. Let
*
* ```tex
* u = \operatorname{round}(1+x)
* ```
*
* and
*
* ```tex
* c = (1+x) - u
* ```
*
* then
*
* ```tex
* \ln (1+x) - \ln u \approx \frac{c}{u}
* ```
*
* We can thus proceed to compute \\(\ln(u)\\), and add back the correction term \\(c/u\\).
*
* <!-- </note> -->
*
* <!-- <note> -->
*
* When \\(x > 2^{53}\\), one can simply return \\(\ln(x)\\).
*
* <!-- </note> -->
*
* 2. Approximation of \\(\operatorname{log1p}(f)\\). Let
*
* ```tex
* s = \frac{f}{2+f}
* ```
*
* based on
*
* ```tex
* \begin{align*}
* \ln 1+f &= \ln (1+s) - \ln (1-s) \\
* &= 2s + \frac{2}{3} s^3 + \frac{2}{5} s^5 + ... \\
* &= 2s + sR \\
* \end{align*}
* ```
*
* We use a special Reme algorithm on \\(\[0,0.1716\]\\) to generate a polynomial of degree \\(14\\) to approximate \\(R\\). The maximum error of this polynomial approximation is bounded by \\(2^{-58.45}\\). In other words,
*
* ```tex
* R(z) \approx \mathrm{Lp}_1 s^2 + \mathrm{Lp}_2 s^4 + \mathrm{Lp}_3 s^6 + \mathrm{Lp}_4 s^8 + \mathrm{Lp}_5 s^{10} + \mathrm{Lp}_6 s^{12} + \mathrm{Lp}_7 s^{14}
* ```
*
* and
*
* ```tex
* | \mathrm{Lp}_1 s^2 + \ldots + \mathrm{Lp}_7 s^14 - R(z) | \leq 2^{-58.45}
* ```
*
* <!-- <note> -->
*
* The values of \\(Lp1\\) to \\(Lp7\\) may be found in the source.
*
* <!-- </note> -->
*
* Note that
*
* ```tex
* \begin{align*}
* 2s &= f - sf \\
* &= f - \frac{f^2}{2} + s \frac{f^2}{2} \\
* \end{align*}
* ```
*
* In order to guarantee error in \\(\ln\\) below \\(1\ \mathrm{ulp}\\), we compute the log by
*
* ```tex
* \operatorname{log1p}(f) = f - \biggl(\frac{f^2}{2} - s\biggl(\frac{f^2}{2}+R\biggr)\biggr)
* ```
*
* 3. Finally,
*
* ```tex
* \begin{align*}
* \operatorname{log1p}(x) &= k \cdot \mathrm{ln2} + \operatorname{log1p}(f) \\
* &= k \cdot \mathrm{ln2}_{hi}+\biggl(f-\biggl(\frac{f^2}{2}-\biggl(s\biggl(\frac{f^2}{2}+R\biggr)+k \cdot \mathrm{ln2}_{lo}\biggr)\biggr)\biggr) \\
* \end{align*}
* ```
*
* Here \\(\mathrm{ln2}\\) is split into two floating point numbers:
*
* ```tex
* \mathrm{ln2}_{hi} + \mathrm{ln2}_{lo}
* ```
*
* where \\(n \cdot \mathrm{ln2}_{hi}\\) is always exact for \\(|n| < 2000\\).
*
*
* ## Special Cases
*
* - \\(\operatorname{log1p}(x) = \mathrm{NaN}\\) with signal if \\(x < -1\\) (including \\(-\infty\\))
* - \\(\operatorname{log1p}(+\infty) = +\infty\\)
* - \\(\operatorname{log1p}(-1) = -\infty\\) with signal
* - \\(\operatorname{log1p}(\mathrm{NaN})= \mathrm{NaN}\\) with no signal
*
*
* ## Notes
*
* - According to an error analysis, the error is always less than \\(1\\) ulp (unit in the last place).
*
* - The hexadecimal values are the intended ones for the used constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown.
*
* - Assuming \\(\ln(x)\\) is accurate, the following algorithm can be used to evaluate \\(\operatorname{log1p}(x)\\) to within a few ULP:
*
* ```javascript
* var u = 1.0 + x;
* if ( u === 1.0 ) {
* return x;
* } else {
* return ln(u) * (x/(u-1.0));
* }
* ```
*
* See HP-15C Advanced Functions Handbook, p.193.
*
*
* @param {number} x - input value
* @returns {number} the natural logarithm of `1+x`
*
* @example
* var v = log1p( 4.0 );
* // returns ~1.609
*
* @example
* var v = log1p( -1.0 );
* // returns -Infinity
*
* @example
* var v = log1p( 0.0 );
* // returns 0.0
*
* @example
* var v = log1p( -0.0 );
* // returns -0.0
*
* @example
* var v = log1p( -2.0 );
* // returns NaN
*
* @example
* var v = log1p( NaN );
* // returns NaN
*/
function log1p( x ) {
var hfsq;
var hu;
var y;
var f;
var c;
var s;
var z;
var R;
var u;
var k;
if ( x < -1.0 || isnan( x ) ) {
return NaN;
}
if ( x === -1.0 ) {
return NINF;
}
if ( x === PINF ) {
return x;
}
if ( x === 0.0 ) {
return x; // handle +-0 (IEEE 754-2008 spec)
}
// Set y = |x|:
if ( x < 0.0 ) {
y = -x;
} else {
y = x;
}
// Argument reduction...
k = 1;
// Check if argument reduction is needed and if we can just return a small value approximation requiring less computation but with equivalent accuracy...
if ( y < SQRT2M1 ) { // if |x| < sqrt(2)-1 => ~0.41422
if ( y < SMALL ) { // if |x| < 2**-29
if ( y < TINY ) { // if |x| < 2**-54
return x;
}
// Use a simple two-term Taylor series...
return x - ( x*x*0.5 );
}
// Check if `f=x` can be represented exactly (no need for correction terms), allowing us to bypass argument reduction...
if ( x > SQRT2HALFM1 ) { // if x > sqrt(2)/2-1 => ~-0.2929
// -0.2929 < x < 0.41422
k = 0;
f = x; // exact
hu = 1;
}
}
// Address case where `f` cannot be represented exactly...
if ( k !== 0 ) {
if ( y < TWO53 ) {
u = 1.0 + x;
hu = getHighWord( u );
// Bit shift to isolate the exponent and then subtract the bias:
k = (hu>>20) - FLOAT64_EXPONENT_BIAS;
// Correction term...
if ( k > 0 ) { // positive unbiased exponent
c = 1.0 - (u-x);
} else { // nonpositive unbiased exponent
c = x - (u-1.0);
}
c /= u;
} else {
u = x;
hu = getHighWord( u );
// Bit shift to isolate the exponent and then subtract the bias:
k = (hu>>20) - FLOAT64_EXPONENT_BIAS;
// Correction term is zero:
c = 0;
}
// Apply a bit mask (0 00000000000 11111111111111111111) to remove the exponent:
hu &= 0x000fffff; // max value => 1048575
// Check if u significand is less than sqrt(2) significand => 0x6a09e => 01101010000010011110
if ( hu < 434334 ) {
// Normalize u by setting the exponent to 1023 (bias) => 0x3ff00000 => 0 01111111111 00000000000000000000
u = setHighWord( u, hu|0x3ff00000 );
} else {
k += 1;
// Normalize u/2 by setting the exponent to 1022 (bias-1 => 2**-1 = 1/2) => 0x3fe00000 => 0 01111111110 00000000000000000000
u = setHighWord( u, hu|0x3fe00000 );
// Subtract hu significand from next largest hu => 0 00000000001 00000000000000000000 => 0x00100000 => 1048576
hu = (1048576-hu)>>2;
}
f = u - 1.0;
}
// Approximation of log1p(f)...
hfsq = 0.5 * f * f;
if ( hu === 0 ) { // if |f| < 2**-20
if ( f === 0.0 ) {
c += k * LN2_LO;
return ( k * LN2_HI ) + c;
}
R = hfsq * (1.0 - ( TWO_THIRDS*f ) ); // avoid division
return ( k*LN2_HI ) - ( (R - ( (k*LN2_LO) + c)) - f );
}
s = f / (2.0 + f);
z = s * s;
R = z * polyval( z );
if ( k === 0 ) {
return f - ( hfsq - ( s*(hfsq+R) ) );
}
return ( k*LN2_HI ) - ( (hfsq - ( (s*(hfsq+R)) + ((k*LN2_LO) + c))) - f );
}
// EXPORTS //
module.exports = log1p;
|