1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified for JavaScript.
*
* ```text
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
*
* Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee.
*
* Stephen L. Moshier
* moshier@na-net.ornl.gov
* ```
*/
'use strict';
// MODULES //
var isInfinite = require( './../../../../base/assert/is-infinite' );
var isnan = require( './../../../../base/assert/is-nan' );
var cos = require( './../../../../base/special/cos' );
var sin = require( './../../../../base/special/sin' );
var ln = require( './../../../../base/special/ln' );
var HALF_PI = require( '@stdlib/constants/float64/half-pi' );
var GAMMA = require( '@stdlib/constants/float64/eulergamma' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var polyvalFN4 = require( './polyval_fn4.js' );
var polyvalFD4 = require( './polyval_fd4.js' );
var polyvalFN8 = require( './polyval_fn8.js' );
var polyvalFD8 = require( './polyval_fd8.js' );
var polyvalGN4 = require( './polyval_gn4.js' );
var polyvalGD4 = require( './polyval_gd4.js' );
var polyvalGN8 = require( './polyval_gn8.js' );
var polyvalGD8 = require( './polyval_gd8.js' );
var polyvalSN = require( './polyval_sn.js' );
var polyvalSD = require( './polyval_sd.js' );
var polyvalCN = require( './polyval_cn.js' );
var polyvalCD = require( './polyval_cd.js' );
// MAIN //
/**
* Computes the sine and cosine integrals.
*
* ## Method
*
* - The integrals are approximated by rational functions.
*
* - For \\( x > 8 \\), auxiliary functions \\( f(x) \\) and \\( g(x) \\) are employed such that
*
* ```tex
* \operatorname{Ci}(x) = f(x) \sin(x) - g(x) \cos(x) \\
* \operatorname{Si}(x) = \pi/2 - f(x) \cos(x) - g(x) \sin(x)
* ```
*
* ## Notes
*
* - Absolute error on test interval \\( \[0,50\] \\), except relative when greater than \\( 1 \\):
*
* | arithmetic | function | # trials | peak | rms |
* |:----------:|:-----------:|:--------:|:-------:|:-------:|
* | IEEE | Si | 30000 | 4.4e-16 | 7.3e-17 |
* | IEEE | Ci | 30000 | 6.9e-16 | 5.1e-17 |
*
*
* @private
* @param {(Array|TypedArray|Object)} out - output array
* @param {number} x - input value
* @returns {(Array|TypedArray|Object)} output array
*
* @example
* var v = sici( [ 0.0, 0.0 ], 3.0 );
* // returns [ ~1.849, ~0.12 ]
*
* @example
* var v = sici( [ 0.0, 0.0 ], 0.0 );
* // returns [ 0.0, -Infinity ]
*
* @example
* var v = sici( [ 0.0, 0.0 ], -9.0 );
* // returns [ ~-1.665, ~0.055 ]
*
* @example
* var v = sici( [ 0.0, 0.0 ], NaN );
* // returns [ NaN, NaN ]
*/
function sici( out, x ) {
var sgn;
var si;
var ci;
var c;
var f;
var g;
var s;
var z;
if ( isnan( x ) ) {
out[ 0 ] = NaN;
out[ 1 ] = NaN;
return out;
}
if ( x < 0.0 ) {
sgn = -1;
x = -x;
} else {
sgn = 0;
}
if ( x === 0.0 ) {
out[ 0 ] = 0.0;
out[ 1 ] = NINF;
return out;
}
if ( x > 1.0e9 ) {
if ( isInfinite( x ) ) {
if ( sgn === -1 ) {
si = -HALF_PI;
ci = NaN;
} else {
si = HALF_PI;
ci = 0.0;
}
out[ 0 ] = si;
out[ 1 ] = ci;
return out;
}
si = HALF_PI - ( cos( x ) / x );
ci = sin( x ) / x;
}
if ( x > 4.0 ) {
s = sin( x );
c = cos( x );
z = 1.0 / ( x*x );
if ( x < 8.0 ) {
f = polyvalFN4( z ) / ( x * polyvalFD4( z ) );
g = z * polyvalGN4( z ) / polyvalGD4( z );
} else {
f = polyvalFN8( z ) / ( x * polyvalFD8( z ) );
g = z * polyvalGN8( z ) / polyvalGD8( z );
}
si = HALF_PI - ( f*c ) - ( g*s );
if ( sgn ) {
si = -si;
}
ci = ( f*s ) - ( g*c );
out[ 0 ] = si;
out[ 1 ] = ci;
return out;
}
z = x * x;
s = x * polyvalSN( z ) / polyvalSD( z );
c = z * polyvalCN( z ) / polyvalCD( z );
if ( sgn ) {
s = -s;
}
si = s;
ci = GAMMA + ln( x ) + c; // real part if x < 0
out[ 0 ] = si;
out[ 1 ] = ci;
return out;
}
// EXPORTS //
module.exports = sici;
|