File: evalrational.js

package info (click to toggle)
node-stdlib 0.0.96%2Bds1%2B~cs0.0.429-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 421,476 kB
  • sloc: javascript: 1,562,831; ansic: 109,702; lisp: 49,823; cpp: 27,224; python: 7,871; sh: 6,807; makefile: 6,089; fortran: 3,102; awk: 387
file content (117 lines) | stat: -rw-r--r-- 3,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_60_0/boost/math/tools/rational.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/

'use strict';

// MODULES //

var abs = require( './../../../../base/special/abs' );


// MAIN //

/**
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
*
* ## Notes
*
* -   Coefficients should be sorted in ascending degree.
* -   The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
*
* @param {NumericArray} P - numerator polynomial coefficients sorted in ascending degree
* @param {NumericArray} Q - denominator polynomial coefficients sorted in ascending degree
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*
* @example
* var P = [ -6.0, -5.0 ];
* var Q = [ 3.0, 0.5 ];
*
* var v = evalrational( P, Q, 6.0 ); //  => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
* // returns -6.0
*
* @example
* // 2x^3 + 4x^2 - 5x^1 - 6x^0 => degree 4
* var P = [ -6.0, -5.0, 4.0, 2.0 ];
*
* // 0.5x^1 + 3x^0 => degree 2
* var Q = [ 3.0, 0.5, 0.0, 0.0 ]; // zero-padded
*
* var v = evalrational( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 + 4*6^2 + 2*6^3 ) / ( 3*6^0 + 0.5*6^1 + 0*6^2 + 0*6^3 ) = (-6-30+144+432)/(3+3)
* // returns 90.0
*/
function evalrational( P, Q, x ) {
	var len;
	var s1;
	var s2;
	var i;

	len = P.length;
	if ( len === 0 ) {
		return NaN;
	}
	if ( len !== Q.length ) {
		return NaN;
	}
	if ( x === 0.0 || len === 1 ) {
		return P[ 0 ] / Q[ 0 ];
	}
	// Use Horner's method...
	if ( abs( x ) <= 1.0 ) {
		s1 = P[ len-1 ];
		s2 = Q[ len-1 ];
		for ( i = len-2; i >= 0; --i ) {
			s1 *= x;
			s2 *= x;
			s1 += P[ i ];
			s2 += Q[ i ];
		}
	} else {
		x = 1.0 / x; // use inverse to avoid overflow
		s1 = P[ 0 ];
		s2 = Q[ 0 ];
		for ( i = 1; i < len; ++i ) {
			s1 *= x;
			s2 *= x;
			s1 += P[ i ];
			s2 += Q[ i ];
		}
	}
	return s1 / s2;
}


// EXPORTS //

module.exports = evalrational;