1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
// @strict: true
// @declaration: true
// @target: esnext
// Awaiting promises
type __Awaited<T> =
T extends null | undefined ? T :
T extends PromiseLike<infer U> ? __Awaited<U> :
T;
type MyPromise<T> = {
then<U>(f: ((value: T) => U | PromiseLike<U>) | null | undefined): MyPromise<U>;
}
type InfinitePromise<T> = Promise<InfinitePromise<T>>;
type P0 = __Awaited<Promise<string | Promise<MyPromise<number> | null> | undefined>>;
type P1 = __Awaited<any>;
type P2 = __Awaited<InfinitePromise<number>>; // Error
function f11<T, U extends T>(tx: T, ta: __Awaited<T>, ux: U, ua: __Awaited<U>) {
ta = ua;
ua = ta; // Error
ta = tx; // Error
tx = ta; // Error
}
// Flattening arrays
type Flatten<T extends readonly unknown[]> = T extends unknown[] ? _Flatten<T>[] : readonly _Flatten<T>[];
type _Flatten<T> = T extends readonly (infer U)[] ? _Flatten<U> : T;
type InfiniteArray<T> = InfiniteArray<T>[];
type B0 = Flatten<string[][][]>;
type B1 = Flatten<string[][] | readonly (number[] | boolean[][])[]>;
type B2 = Flatten<InfiniteArray<string>>;
type B3 = B2[0]; // Error
// Repeating tuples
type TupleOf<T, N extends number> = N extends N ? number extends N ? T[] : _TupleOf<T, N, []> : never;
type _TupleOf<T, N extends number, R extends unknown[]> = R['length'] extends N ? R : _TupleOf<T, N, [T, ...R]>;
type TT0 = TupleOf<string, 4>;
type TT1 = TupleOf<number, 0 | 2 | 4>;
type TT2 = TupleOf<number, number>;
type TT3 = TupleOf<number, any>;
type TT4 = TupleOf<number, 100>;
type TT5 = TupleOf<number, 1000>; // Depth error
function f22<N extends number, M extends N>(tn: TupleOf<number, N>, tm: TupleOf<number, M>) {
tn = tm;
tm = tn;
}
declare function f23<T>(t: TupleOf<T, 3>): T;
f23(['a', 'b', 'c']); // string
// Inference to recursive type
interface Box<T> { value: T };
type RecBox<T> = T | Box<RecBox<T>>;
type InfBox<T> = Box<InfBox<T>>;
declare function unbox<T>(box: RecBox<T>): T
type T1 = Box<string>;
type T2 = Box<T1>;
type T3 = Box<T2>;
type T4 = Box<T3>;
type T5 = Box<T4>;
type T6 = Box<T5>;
declare let b1: Box<Box<Box<Box<Box<Box<string>>>>>>;
declare let b2: T6;
declare let b3: InfBox<string>;
declare let b4: { value: { value: { value: typeof b4 }}};
unbox(b1); // string
unbox(b2); // string
unbox(b3); // InfBox<string>
unbox({ value: { value: { value: { value: { value: { value: 5 }}}}}}); // number
unbox(b4); // { value: { value: typeof b4 }}
unbox({ value: { value: { get value() { return this; } }}}); // { readonly value: ... }
// Inference from nested instantiations of same generic types
type Box1<T> = { value: T };
type Box2<T> = { value: T };
declare function foo<T>(x: Box1<Box1<T>>): T;
declare let z: Box2<Box2<string>>;
foo(z); // unknown, but ideally would be string (requires unique recursion ID for each type reference)
// Intersect tuple element types
type Intersect<U extends any[], R = unknown> = U extends [infer H, ...infer T] ? Intersect<T, R & H> : R;
type QQ = Intersect<[string[], number[], 7]>;
// Infer between structurally identical recursive conditional types
type Unpack1<T> = T extends (infer U)[] ? Unpack1<U> : T;
type Unpack2<T> = T extends (infer U)[] ? Unpack2<U> : T;
function f20<T, U extends T>(x: Unpack1<T>, y: Unpack2<T>) {
x = y;
y = x;
f20(y, x);
}
type Grow1<T extends unknown[], N extends number> = T['length'] extends N ? T : Grow1<[number, ...T], N>;
type Grow2<T extends unknown[], N extends number> = T['length'] extends N ? T : Grow2<[string, ...T], N>;
function f21<T extends number>(x: Grow1<[], T>, y: Grow2<[], T>) {
f21(y, x); // Error
}
// Repros from #41756
type ParseSuccess<R extends string> = { rest: R };
type ParseManyWhitespace<S extends string> =
S extends ` ${infer R0}` ?
ParseManyWhitespace<R0> extends ParseSuccess<infer R1> ? ParseSuccess<R1> : null :
ParseSuccess<S>;
type TP1 = ParseManyWhitespace<" foo">;
type ParseManyWhitespace2<S extends string> =
S extends ` ${infer R0}` ?
Helper<ParseManyWhitespace2<R0>> :
ParseSuccess<S>;
type Helper<T> = T extends ParseSuccess<infer R> ? ParseSuccess<R> : null
type TP2 = ParseManyWhitespace2<" foo">;
// Repro from #46183
type NTuple<N extends number, Tup extends unknown[] = []> =
Tup['length'] extends N ? Tup : NTuple<N, [...Tup, unknown]>;
type Add<A extends number, B extends number> =
[...NTuple<A>, ...NTuple<B>]['length'];
let five: Add<2, 3>;
// Repro from #46316
type _PrependNextNum<A extends Array<unknown>> = A['length'] extends infer T
? [T, ...A] extends [...infer X]
? X
: never
: never;
type _Enumerate<A extends Array<unknown>, N extends number> = N extends A['length']
? A
: _Enumerate<_PrependNextNum<A>, N> & number;
type Enumerate<N extends number> = number extends N
? number
: _Enumerate<[], N> extends (infer E)[]
? E
: never;
function foo2<T extends unknown[]>(value: T): Enumerate<T['length']> {
return value.length; // Error
}
|