1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Written 2020, 2021 by Markus Triska (triska@metalevel.at)
Part of Tau Prolog.
This library provides the nonterminal format_//2 to describe
formatted strings. format/[2,3] are provided for impure output.
Usage:
======
phrase(format_(FormatString, Arguments), Ls)
format_//2 describes a list of characters Ls that are formatted
according to FormatString. FormatString is a string (i.e.,
a list of characters) that specifies the layout of Ls.
The characters in FormatString are used literally, except
for the following tokens with special meaning:
~w use the next available argument from Arguments here
~q use the next argument here, formatted as by writeq/1
~a use the next argument here, which must be an atom
~s use the next argument here, which must be a string
~d use the next argument here, which must be an integer
~f use the next argument here, a floating point number
~Nf where N is an integer: format the float argument
using N digits after the decimal point
~Nd like ~d, placing the last N digits after a decimal point;
if N is 0 or omitted, no decimal point is used.
~ND like ~Nd, separating digits to the left of the decimal point
in groups of three, using the character "," (comma)
~Nr where N is an integer between 2 and 36: format the
next argument, which must be an integer, in radix N.
The characters "a" to "z" are used for radices 10 to 36.
If N is omitted, it defaults to 8 (octal).
~NR like ~Nr, except that "A" to "Z" are used for radices > 9
~| place a tab stop at this position
~N| where N is an integer: place a tab stop at text column N
~N+ where N is an integer: place a tab stop N characters
after the previous tab stop (or start of line)
~t distribute spaces evenly between the two closest tab stops
~`Ct like ~t, use character C instead of spaces to fill the space
~n newline
~Nn N newlines
~i ignore the next argument
~~ the literal ~
Instead of ~N, you can write ~* to use the next argument from Arguments
as the numeric argument.
The predicate format/2 is like format_//2, except that it outputs
the text on the terminal instead of describing it declaratively.
format/3, used as format(Stream, FormatString, Arguments), outputs
the described string to the given Stream. If Stream is a binary
stream, then the code of each emitted character must be in 0..255.
If at all possible, format_//2 should be used, to stress pure parts
that enable easy testing etc. If necessary, you can emit the list Ls
with maplist(put_char, Ls) or, much faster, with format("~s", [Ls]).
Ideally, however, you use phrase_to_file/[2,3] or phrase_to_stream/2
from library(pio) to write the described list directly to a file
or stream, respectively: phrase_to_stream(format_(..., [...]), S).
The advantage of this is that an ideal implementation writes
the characters as they become known, without manifesting the list.
The entire library only works if the Prolog flag double_quotes
is set to chars, the default value in Scryer Prolog. This should
also stay that way, to encourage a sensible environment.
Example:
?- phrase(format_("~s~n~`.t~w!~12|", ["hello",there]), Cs).
%@ Cs = "hello\n......there!".
I place this code in the public domain. Use it in any way you want.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- module(format, [format_/4,
format/2,
format/3
]).
:- use_module(library(lists)).
:- use_module(library(charsio)).
format_(Fs, Args) -->
{ (is_list(Fs) -> true ; throw(error(type_error(list, Fs), format_//2))),
(is_list(Args) -> true ; throw(error(type_error(list, Args), format_//2))),
unique_variable_names(Args, VNs),
phrase(cells(Fs,Args,0,[],VNs), Cells) },
format_cells(Cells).
format_cells([]) --> [].
format_cells([Cell|Cells]) -->
format_cell(Cell),
format_cells(Cells).
format_cell(newline) --> "\n".
format_cell(cell(From,To,Es)) -->
% distribute the space between the glue elements
{ phrase(elements_gluevars(Es, 0, Length), Vs),
( Vs = [] -> true
; Space is To - From - Length,
( Space =< 0 -> maplist(=(0), Vs)
; length(Vs, NumGlue),
Distr is Space // NumGlue,
Delta is Space - Distr*NumGlue,
( Delta =:= 0 ->
maplist(=(Distr), Vs)
; BigGlue is Distr + Delta,
reverse(Vs, [BigGlue|Rest]),
maplist(=(Distr), Rest)
)
)
) },
format_elements(Es).
format_elements([]) --> [].
format_elements([E|Es]) -->
format_element(E),
format_elements(Es).
format_element(chars(Cs)) --> seq(Cs).
format_element(glue(Fill,Num)) -->
{ length(Ls, Num),
maplist(=(Fill), Ls) },
seq(Ls).
elements_gluevars([], N, N) --> [].
elements_gluevars([E|Es], N0, N) -->
element_gluevar(E, N0, N1),
elements_gluevars(Es, N1, N).
element_gluevar(chars(Cs), N0, N) -->
{ length(Cs, L),
N is N0 + L }.
element_gluevar(glue(_,V), N, N) --> [V].
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Our key datastructure is a list of cells and newlines.
A cell has the shape cell(From,To,Elements), where
From and To denote the positions of surrounding tab stops.
Elements is a list of elements that occur in a cell,
namely terms of the form chars(Cs) and glue(Char, Var).
"glue" elements (TeX terminology) are evenly stretched
to fill the remaining whitespace in the cell. For each
glue element, the character Char is used for filling,
and Var is a free variable that is used when the
available space is distributed.
newline is used if ~n occurs in a format string.
It is used because a newline character does not
consume whitespace in the sense of format strings.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
cells([], Args, Tab, Es, _) --> !,
( { Args == [] } -> cell(Tab, Tab, Es)
; { throw(error(domain_error(empty_list, Args), cells//5)) }
).
cells([~,~|Fs], Args, Tab, Es, VNs) --> !,
cells(Fs, Args, Tab, [chars("~")|Es], VNs).
cells([~,w|Fs], [Arg|Args], Tab, Es, VNs) --> !,
{ write_term_to_chars(Arg, [numbervars(true),variable_names(VNs)], Chars) },
cells(Fs, Args, Tab, [chars(Chars)|Es], VNs).
cells([~,q|Fs], [Arg|Args], Tab, Es, VNs) --> !,
{ write_term_to_chars(Arg, [quoted(true),numbervars(true),variable_names(VNs)], Chars) },
cells(Fs, Args, Tab, [chars(Chars)|Es], VNs).
cells([~,a|Fs], [Arg|Args], Tab, Es, VNs) --> !,
{ atom_chars(Arg, Chars) },
cells(Fs, Args, Tab, [chars(Chars)|Es], VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, [d|Fs], Args0, [Arg0|Args]) },
!,
{ Arg is Arg0, % evaluate compound expression
(integer(Arg) -> true ; throw(error(type_error(integer, Arg), cells//5))),
number_chars(Arg, Cs0) },
( { Num =:= 0 } -> { Cs = Cs0 }
; { length(Cs0, L),
( L =< Num ->
Delta is Num - L,
length(Zs, Delta),
maplist(=('0'), Zs),
phrase(("0.",seq(Zs),seq(Cs0)), Cs)
; BeforeComma is L - Num,
length(Bs, BeforeComma),
append(Bs, Ds, Cs0),
phrase((seq(Bs),".",seq(Ds)), Cs)
) }
),
cells(Fs, Args, Tab, [chars(Cs)|Es], VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, ['D'|Fs], Args0, [Arg|Args]) },
!,
{ number_chars(Num, NCs),
phrase(("~",seq(NCs),"d"), FStr),
phrase(format_(FStr, [Arg]), Cs0),
phrase(upto_what(Bs0, .), Cs0, Ds),
reverse(Bs0, Bs1),
phrase(groups_of_three(Bs1), Bs2),
reverse(Bs2, Bs),
append(Bs, Ds, Cs) },
cells(Fs, Args, Tab, [chars(Cs)|Es], VNs).
cells([~,i|Fs], [_|Args], Tab, Es, VNs) --> !,
cells(Fs, Args, Tab, Es, VNs).
cells([~,n|Fs], Args, Tab, Es, VNs) --> !,
cell(Tab, Tab, Es),
n_newlines(1),
cells(Fs, Args, 0, [], VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, [n|Fs], Args0, Args) },
!,
cell(Tab, Tab, Es),
n_newlines(Num),
cells(Fs, Args, 0, [], VNs).
cells([~,s|Fs], [Arg|Args], Tab, Es, VNs) --> !,
cells(Fs, Args, Tab, [chars(Arg)|Es], VNs).
cells([~,f|Fs], [Arg|Args], Tab, Es, VNs) --> !,
{ format_number_chars(Arg, Chars) },
cells(Fs, Args, Tab, [chars(Chars)|Es], VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, [f|Fs], Args0, [Arg|Args]) },
!,
{ format_number_chars(Arg, Cs0),
phrase(upto_what(Bs, .), Cs0, Cs),
( Num =:= 0 -> Chars = Bs
; ( Cs = ['.'|Rest] ->
length(Rest, L),
( Num < L ->
length(Ds, Num),
append(Ds, _, Rest)
; Num =:= L ->
Ds = Rest
; Num > L,
Delta is Num - L,
% we should look into the float with
% greater accuracy here, and use the
% actual digits instead of 0.
length(Zs, Delta),
maplist(=('0'), Zs),
append(Rest, Zs, Ds)
)
; length(Ds, Num),
maplist(=('0'), Ds)
),
append(Bs, ['.'|Ds], Chars)
) },
cells(Fs, Args, Tab, [chars(Chars)|Es], VNs).
cells([~,r|Fs], Args, Tab, Es, VNs) --> !,
cells([~,'8',r|Fs], Args, Tab, Es, VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, [r|Fs], Args0, [Arg|Args]) },
!,
{ integer_to_radix(Arg, Num, lowercase, Cs) },
cells(Fs, Args, Tab, [chars(Cs)|Es], VNs).
cells([~,'R'|Fs], Args, Tab, Es, VNs) --> !,
cells([~,'8','R'|Fs], Args, Tab, Es, VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, ['R'|Fs], Args0, [Arg|Args]) },
!,
{ integer_to_radix(Arg, Num, uppercase, Cs) },
cells(Fs, Args, Tab, [chars(Cs)|Es], VNs).
cells([~,'`',Char,t|Fs], Args, Tab, Es, VNs) --> !,
cells(Fs, Args, Tab, [glue(Char,_)|Es], VNs).
cells([~,t|Fs], Args, Tab, Es, VNs) --> !,
cells(Fs, Args, Tab, [glue(' ',_)|Es], VNs).
cells([~,'|'|Fs], Args, Tab0, Es, VNs) --> !,
{ phrase(elements_gluevars(Es, 0, Width), _),
Tab is Tab0 + Width },
cell(Tab0, Tab, Es),
cells(Fs, Args, Tab, [], VNs).
cells([~|Fs0], Args0, Tab, Es, VNs) -->
{ numeric_argument(Fs0, Num, ['|'|Fs], Args0, Args) },
!,
cell(Tab, Num, Es),
cells(Fs, Args, Num, [], VNs).
cells([~|Fs0], Args0, Tab0, Es, VNs) -->
{ numeric_argument(Fs0, Num, [+|Fs], Args0, Args) },
!,
{ Tab is Tab0 + Num },
cell(Tab0, Tab, Es),
cells(Fs, Args, Tab, [], VNs).
cells([~|Cs], Args, _, _, _) -->
( { Args == [] } ->
{ throw(error(domain_error(non_empty_list, []), cells//5)) }
; { throw(error(domain_error(format_string, [~|Cs]), cells//5)) }
).
cells(Fs0, Args, Tab, Es, VNs) -->
{ phrase(upto_what(Fs1, ~), Fs0, Fs),
Fs1 = [_|_] },
cells(Fs, Args, Tab, [chars(Fs1)|Es], VNs).
format_number_chars(N0, Chars) :-
N is N0, % evaluate compound expression
number_chars(N, Chars).
n_newlines(0) --> !.
n_newlines(N0) --> { N0 > 0, N is N0 - 1 }, [newline], n_newlines(N).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
?- phrase(upto_what(Cs, ~), "abc~test", Rest).
Cs = [a,b,c], Rest = [~,t,e,s,t].
?- phrase(upto_what(Cs, ~), "abc", Rest).
Cs = [a,b,c], Rest = [].
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
upto_what([], W), [W] --> [W], !.
upto_what([C|Cs], W) --> [C], !, upto_what(Cs, W).
upto_what([], _) --> [].
groups_of_three([A,B,C,D|Rs]) --> !, [A,B,C], ",", groups_of_three([D|Rs]).
groups_of_three(Ls) --> seq(Ls).
cell(From, To, Es0) -->
( { Es0 == [] } -> []
; { reverse(Es0, Es) },
[cell(From,To,Es)]
).
%?- format:numeric_argument("2f", Num, [f|Fs], Args0, Args).
%?- format:numeric_argument("100b", Num, Rs, Args0, Args).
numeric_argument(Ds, Num, Rest, Args0, Args) :-
( Ds = [*|Rest] ->
Args0 = [Num|Args]
; phrase(numeric_argument_(Ds, Rest), Ns),
foldl(plus_times10, Ns, 0, Num),
Args0 = Args
).
numeric_argument_([D|Ds], Rest) -->
( { member(D, "0123456789") } ->
{ number_chars(N, [D]) },
[N],
numeric_argument_(Ds, Rest)
; { Rest = [D|Ds] }
).
plus_times10(D, N0, N) :- N is D + N0*10.
radix_error(lowercase, R) --> format_("~~~dr", [R]).
radix_error(uppercase, R) --> format_("~~~dR", [R]).
integer_to_radix(I0, R, Which, Cs) :-
I is I0, % evaluate compound expression
(integer(I) -> true ; throw(error(type_error(integer, I), integer_to_radix/4))),
(integer(R) -> true ; throw(error(type_error(integer, R), integer_to_radix/4))),
( \+ between(2, 36, R) ->
phrase(radix_error(Which,R), Es),
throw(error(domain_error(format_string, Es), integer_to_radix/4))
; true
),
digits(Which, Ds),
( I < 0 ->
Pos is abs(I),
phrase(integer_to_radix_(Pos, R, Ds), Cs0, "-")
; I =:= 0 -> Cs0 = "0"
; phrase(integer_to_radix_(I, R, Ds), Cs0)
),
reverse(Cs0, Cs).
integer_to_radix_(0, _, _) --> !.
integer_to_radix_(I0, R, Ds) -->
{ M is I0 mod R,
nth0(M, Ds, D),
I is I0 // R },
[D],
integer_to_radix_(I, R, Ds).
digits(lowercase, "0123456789abcdefghijklmnopqrstuvwxyz").
digits(uppercase, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ").
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Impure I/O, implemented as a small wrapper over format_//2.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
format(Fs, Args) :-
phrase(format_(Fs,Args), Cs),
maplist(write, Cs).
format(Stream, Fs, Args) :-
phrase(format_(Fs,Args), Cs),
maplist(write(Stream), Cs).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
?- phrase(format:cells("hello", [], 0, [], []), Cs).
?- phrase(format:cells("hello~10|", [], 0, [], []), Cs).
?- phrase(format:cells("~ta~t~10|", [], 0, [], []), Cs).
?- phrase(format_("~`at~50|", []), Ls).
?- phrase(format:cells("~`at~50|", [], 0, [], []), Cs),
phrase(format:format_cells(Cs), Ls).
?- phrase(format:cells("~ta~t~tb~tc~21|", [], 0, [], []), Cs).
Cs = [cell(0,21,[glue(' ',_A),chars("a"),glue(' ',_B),glue(' ',_C),chars("b"),glue(' ',_D),chars("c ...")])]
?- phrase(format:cells("~ta~t~4|", [], 0, [], []), Cs).
Cs = [cell(0,4,[glue(' ',_A),chars("a"),glue(' ',_B)])]
?- phrase(format:format_cell(cell(0,1,[glue(a,_94)])), Ls).
?- phrase(format:format_cell(cell(0,50,[chars("hello")])), Ls).
?- phrase(format_("~`at~50|~n", []), Ls).
?- phrase(format_("hello~n~tthere~6|", []), Ls).
?- format("~ta~t~4|", []).
a true.
?- format("~ta~tb~tc~10|", []).
a b c true.
?- format("~tabc~3|", []).
?- format("~ta~t~4|", []).
?- format("~ta~t~tb~tc~20|", []).
a b c true.
?- format("~2f~n", [3]).
3.00
true.
?- format("~20f", [0.1]).
0.10000000000000000000 true.
?- X is atan(2), format("~7f~n", [X]).
1.1071487
X = 1.1071487177940906.
?- format("~`at~50|~n", []).
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
true
?- format("~t~N", []).
?- format("~q", [.]).
'.' true.
?- format("~12r", [300]).
210 true.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
unique_variable_names(Term, VNs) :-
term_variables(Term, Vs),
foldl(var_name, Vs, VNs, 0, _).
var_name(V, Name=V, Num0, Num) :-
charsio:fabricate_var_name(numbervars, Name, Num0),
Num is Num0 + 1.
seq([]) --> [].
seq([E|Es]) --> [E], seq(Es).
|